Bardic: Generating Multimedia Narrative Reports for Game Logs

Camille Barot!, Michael Branon*, Rogelio E. Cardona-Rivera®, Markus Eger', Michelle Glatz?,
Nancy Green?, James Mattice*, Colin M. Potts', Justus Robertson', Makiko Shukonobe?
Laura Tateosian?, Brandon R. Thorne!, and R. Michael Young®

1 Department of Computer Science, North Carolina State University, Raleigh, NC, USA
2 Center for Spacial Analytics, North Carolina State University, Raleigh, NC, USA
3 School of Computing and the Entertainment Arts and Engineering Program, Salt Lake City, UT, USA
4 Department of Computer Science, UNC Greensboro, Greensboro, NC, USA
camillebarot@gmail.com, {meger | mlglatz | cmpotts | jjrobert | mshukun | Igtateos | brthorne } @ncsu.edu,
{mabranon | jrmattic | nlgreen} @uncg.edu, {rogelio | young} @eae.utah.edu

Abstract

In this paper we present the system called Bardic, which
was developed over three years as the core technology in
the Narrative for Sensemaking project, an effort to automati-
cally generate narrative from low-level event data as an aid for
sense making. At its core, Bardic is a narrative report genera-
tor that uses a logic-based language to represent a story based
on event/activity logs. Bardic generates different types of nar-
rative discourse designed to convey different aspects of the
underlying data. The system consists of a Unity application
that allows users to explore generated stories and select parts
of the stories to analyze in detail. In addition to its narrative
generation capabilities, the application provides visualization
and query capabilities. In this paper we provide screen shots
of the application in use, show examples of narrative output
produced by Bardic, detail how Bardic generates its output,
and discuss the current system’s capabilities and limitations.

Introduction

Narrative is one central way that people make sense of
the world (Bruner 1991). In the Narrative for Sensemaking
project, we are concerned with producing summary reports
or narrativizations describing activity in complex domains,
leveraging people’s common cognitive orientation around
narrative to make the reports more accessible to non-experts.
To do so, we use a tripartite model of narratives as described
by Barot et al. (2015), consisting of a story, a discourse,
and a narration. In this paper we describe the tool Bardic
and its associated web services and how they can be used to
generate multimedia narratives characterizing game logs of
the online multi-player game Defense of the Ancients 2 (or
DotA 2 (Valve Corporation 2013)). The current design of
the Bardic tool targets users seeking to make sense of DOTA
2 ’s low-level event logs (e.g., the large number of DOTA
2 fans that review competitive DOTA 2 logs). However, the
tool and its capabilities are intentded to serve as proof-of-
concept for a broader application, specifically the automated
narrativization of large corpora of low-level event data, ulti-
mately to increase users’ understanding of that data.

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

DoTA 2 is a multiplayer online battle arena (MOBA)
game in which two teams of five players compete in fantasy-
style combat to destroy the other team’s base. The game is
played in a virtual outdoor arena roughly the size of four
soccer fields. DOTA 2 presents a number of challenges for
systems working to automatically generate narrative sum-
maries of complex event sequences. In DOTA 2 , players
often form, revise, and drop plans over time as they obtain
new information. There are multiple factions and teamwork
within each faction, but a team is not in the same location
at all times, so the resulting narratives will feature a vari-
able number of actors. Games typically last around 45 min-
utes, are self-contained, and follow a natural progression of
phases. The early part of game is dedicated to building up
resources followed by a more objective-oriented mid-game
and a team fight-focused late-game. Log data from game-
play is at a very fine-grained, high frequency level focused
on game state snapshots compared to the abstract narrative-
oriented communicative style that people naturally use to
communicate about game dynamics.

System Architecture

Bardic is a software application built with the Unity3D
game engine' that generates multimedia narrative reports for
DoTA 2 game logs. Our tool, Bardic, allows users to ana-
lyze a particular game, select subsets by time and charac-
ters of interest, and generate narrative reports about these
subsets in the form of text, maps, and machinima (cine-
matic sequences generated using a 3D game engine). Fig-
ure 1 shows an overview of the system architecture. Bardic’s
pre-processing phase consists of three sub-processes: pars-
ing the log files produced by DOTA 2 using the third-party
libraries Skadi® and Tarrasque®, translating the extracted in-
formation into a logical language, and automatically anno-
tating the resulting knowledge base with information relat-
ing the actions of the characters within the game world to
their respective intentions. The resulting knowledge base is
then used by Bardic to provide query capabilities and vi-

"https://unity3d.com/
Zhttps://github.com/skadistats/skadi
*https://github.com/skadistats/Tarrasque

sualizations as well as to drive the generation of the narra-
tive. The process of integrating the event data into coherent
stories and determining how to communicate these stories
across media in narrative discourse is done by an external
web service running on a centralized server.

Pre-processing

The pre-processing step takes a game log from DOTA 2 and
translates it into Impulse, a logic-based language for the en-
coding of stories (Eger, Barot, and Young 2015). A story
encoded in Impulse consists of three main parts: Actions,
actants (i.e. actors and objects), and facts that hold in the
world. In logical terms, the facts are logical sentences, the
actions describe how facts change over time, and the actors
and objects are what the facts are about. Every fact is in-
dexed by the temporal interval over which it holds. In addi-
tion to the standard logic primitives, Impulse also has modal-
ities to describe characters’ beliefs, desires, and intentions
during different time intervals (although the representation
of beliefs and desires for DOTA 2 characters is not currently
used in Bardic).

Game Log Parsing DOTA 2 automatically creates game
log files for every game session. During gameplay, the game
records snapshots of the game state, fully specifying all
attributes of each character (e.g., location, health, money,
items) 30 times per second and stores them in an associated
game log file. Additionally, the game log also contains a list
of every action that occurs in the game (e.g., attacks, player
deaths, destroyed buildings). The game logs are encoded in a
proprietary, closed binary format, requiring the use of one of
several publicly available libraries to extract their contents.

The translation from game log data to Impulse is straight-
forward. The player and non-player characters referenced
in the logs are translated to actors in the story; items are
translated to objects; attacks and abilities used by charac-
ters are translated to story actions. Movement actions, which
are not explicitly marked in the log file, are reconstructed
from the location attribute of the characters by fitting line
segments to the sequence of location data when a character
moves more than a small distance away from their location.
As long as they move within a small tolerance of a straight
line at constant speed, they are considered to be perform-
ing the same movement action. Once they change direction
or stop, a move action is added to the impulse file. Other
static and time-dependent player properties like player loca-
tion, team affiliation and character levels are also translated
into logical sentences, an example of which can be seen in
Listing 1. However, because DOTA 2 is a proprietary game
not all information present in the replay file can be extracted
by the third-party libraries. We therefore do not have certain
information, like which trees characters cut down or all abil-
ities of all available characters. However, we fully support
over 25 characters with their abilities, and many of the other
character’s abilities in a generic way.

In addition to translating the actions present in the game
log, the parsing process also infers causal relationships be-
tween actions. This is done by referring to action models that
characterize DOTA 2 actions using a STRIPS-style (Fikes

and Nilsson 1971) action representation, and then matching
every action’s preconditions with consistent effects asserted
by the most recent prior actions. The action models come
from hand-authored STRIPS operators specific to a given
domain, in our case, DOTA 2. The process for determining
causal connectivity is a greedy one, essentially tagging the
temporally closest potential source for each causal relation
as its source. For example, an ATTACK action has the pre-
condition of being proximal to its target, while a MOVE ac-
tion has the effect of positioning its moving character at a
given location. To determine the causal source of an AT-
TACK action’s proximity precondition, the system selects
the MOVE action that precedes the ATTACK, that places the
moving character in range of the ATTACK’s target and that
moves the same character involved in the ATTACK.

<predicate name="‘‘alive’’>
<constant value=‘‘creep-1520526°"/>
<constant value=°16798—-19514""/>
</predicate>

Listing 1: A sentence expressing when a particular computer
controlled character was alive.

Intention Recognition After parsing the contents of the
game log into Impulse elements, the pre-processor adds an-
notations linking each action to the intention(s) that it helps
achieve for the character performing the action. As a simple
example, the action of player A attacking player B is per-
formed as a means to achieve A’s goal of having player B
dead. Our pre-processing step groups temporally close ac-
tions that happen in pursuit of the same goal into an infen-
tion frame, following terminology introduced by Ware and
Young (2011). The possible intentions for each action type
and their maximum temporal extents, which determines how
actions are grouped were defined by a domain expert. The
intentions are added as logical sentences to the Impulse file
that describe which actions are members of which frames,
and what the intended goal of each frame is. Other aspects
of narrative modeling (e.g., tracking character belief (Thorne
and Young 2017) and the interplay between belief and in-
tention revision (Young 2017) could also be added in future
versions of the system; such additions would potentially in-
crease the expressivity of the system by providing a repre-
sentation for narrative situations where, for instance, char-
acters come to hold mistaken beliefs that lead them to take
up doomed courses of action.

Unity Application

The Bardic application first loads the Impulse files produced
by the pre-processing steps. The user can then select a subset
of the game indexed by time and characters, request that the
system generate a corresponding narrative report (in any or
all of the three media types) and, after inspecting the result-
ing report, refine or revise the system focus and request new
narrative reports. We have developed a desktop version of
this interface as well as a multi-screen version that utilizes
two table-top touch displays for user interaction and renders
output on a 21’-wide wall-mounted display (the latter con-
figuration is shown in Figure 7).

Cntention Recognition}

Enriched Impulse —— > Scene

g Text Gen '
Narrative [> Map Gen '
'f Film Gen '

Web Services

\ o o N
Parser 2 [StoryVisuaIization) Query Builder
ol |c
v =1 g A
q) -
o B
Impulse =
o
<
=
c
S

Figure 1: The system architecture for the Bardic system. In this figure, rectangles indicate data stores and ovals indicate processes. Data flow

is indicated by the directed arcs.

Frame 22029 Scene Map
(00:12:18) g

Scene Creop Trails 1Hero Trals
Selection

e

Characters

ToTAL
003647

000057 CONFIRM
66231 SELECTION

1734
2020

BACK

BAREIC

EXIT

Figure 2: Bardic’s subset selection screen is used to constrain the
game log content for which narrative reports are generated. The
tool allows users to scrub through game activity over time, to view
graphical characterization of game state variables and to restrict
narrative generation to sub-stories by time and player participants.

The first screen presented to a user after loading an Im-
pulse file is the subset selection screen as seen in Figure 2.
This screen shows how the game progresses over time. It
contains static graphs that visualize key statistics over the
course of the game as well as an animated map that dis-
plays the location of every character. The user can play back,
pause, and scrub through time to see where the characters
are, and use this information to select an interval of interest.
The user can also restrict the characters that should be in-
cluded in the selected subset by using the checkboxes. Once
a user has selected a time interval and a set of characters,
they can confirm the selection and all subsequent actions
will only use the selected sub-story.

Story Visualization Viewing the underlying structure of
actions, particularly how action types are distributed tempo-
rally and across actors, can yield insights into what is hap-

Story Plan
Visualization

TOGGLE

DISPLAY SETTINGS. e

STEPS: 203/489

BAREIC i S e e o

PROCESSING RATE: 50

Figure 3: Bardic’s visualization of a generated story structure
based on DOTA 2 log data. Rectangles in the diagram indicate ac-
tions, lines between actions indicate causal or temporal constraints
and color is used to indicate sub-plans performed by distinct char-
acters.

pening in the game. Our application therefore provides the
capability to display that structure in a visual way. It shows
each action as a box, with edges between them representing
their causal relationships. The nodes are grouped by actor
and are in temporal order from left to right with vertical oft-
sets as necessary to prevent occlusions between actions that
happen concurrently. Figure 3 shows an example of the vi-
sualization screen. Note that the user can include or exclude
any actors in order to focus on interactions of interest.

Query Builder Since the representation we use for the
story is based on a restricted temporal logic, it is possible
to use an inference process defined over that language to an-
swer logical queries. The query builder screen provides an
interactive query builder for such queries. Our query builder
works by allowing the user to choose which kind of query
they want to perform and specify the necessary parameters

for each question type. Available question types are about
who performed an action, where a character was located,
which property an executed action had, and why an action
was performed. Depending on the query’s type, the other
fields are then used to fill in particular action types, actors,
or targets of the action in question. It is also possible to leave
any of the fields blank to query any applicable action in-
stance. To answer a query, the system will unify the query
with entries in its knowledge base until a match is found, and
respond with bindings to the variables in the query. Once
presented with the response, the user may request that the
system finds another answer, until the system tells the user
that they have exhausted all possible answers. For example,
one query that could be asked is “When Mirana healed any-
one, what was the amount?”’. When the query is performed,
the answer might be “37”, together with the target of the
healing action, e.g. “Skywrath Mage”. The user may then
request another answer, and get another entry of “44” with
a target of “Crystal Maiden”, and so on, until the system re-
sponds with “No more answers”.

Data-Driven Narrative Generation and Narrative
Web Services

The main functionality of our system is the generation of
multimedia narratives for a subset of the game as selected
in the UL The generation approach follows a pipeline which
takes as input a story, in our case the subset of the game,
and some additional information as provided by the user in
the UI, then produces a discourse plan that describes what
should be communicated and then uses this plan to real-
ize output in some medium. The general outline of this ap-
proach is well-established in the literature. The COMET
system (Feiner and McKeown 1991), for example, gener-
ated instructions for maintenance and repair of military ra-
dio equipment using such a pipeline architecture. WIP is an-
other early system with a similar architecture that was used
to generate text and pictorial documents (Andre et al. 1993;
Wahlster et al. 1993; André and Rist 1995). More recently,
Molina and Flores (2012) describe a system that generates
multimedia text, 2D graphics using sprites, and 3D anima-
tion summaries about the behavior of dynamic systems us-
ing a hierarchical planner, similar to how Bardic generates
narratives. We build on these ideas, and add the capability to
generate spatial maps.

The input to our narrative generation process consists of
the selected subset of the game, the specification of the char-
acter or characters to focus on for the narrative, the con-
straints on the media types to generate and restrictions on
which narrative trope to use to organize the narrative con-
tent.

At present, our system supports four narrative tropes
to guide the generation of the narrative in different sce-
narios. In Bardic, tropes are hand-authored story schemas
or patterns defined by system designers. These trope pat-
terns match human-recognizable action sequences to the dis-
course conventions used to convey them. Future work will
expand the set of tropes considered to address a broader
range of narrative patterns. The currently supported tropes
and how they guide the narrative generation are:

e Chase Fight: This trope is applicable in which a character
flees from another character while being attacked.

e Alpha Strike: This trope refers to situations in which a
group of characters attacks one or more enemies simulta-
neously.

e Hard Work Montage: This trope utilizes the encoded in-
tentions to showcase situations in which a character must
perform many actions to achieve a goal, for example re-
peatedly attacking and finally killing an enemy player.

o Failure Montage: In contrast to the hard work montage,
this trope applies to cases in which a character tries to
achieve some goal but ultimately fails, for example failing
to kill an enemy player despite attacking them multiple
times.

The narrative is then generated using planning to deter-
mine what to show to the audience and in which order, sim-
ilarly to Jhala and Young (2010). The planning problem is
set up as follows: the facts about the world and the game
actions that occurred in the subset are encoded in the initial
state, and the goal state consists of what to communicate.
The operators in the planning domain are communicative
primitives which depend on the medium to be generated.
Once the planning process is complete, the resulting com-
municative primitives are used to request the actual media
output from the particular medium realizer, as discussed be-
low. The goal of the discourse planning process usually con-
sists of communicating all actions by the focus character and
other actions that affect them that happened in the selected
subset, but selecting a trope will change this. When a trope
is selected only the actions necessary for that trope will be
communicated. However, since each trope is only applica-
ble if the actions in the selected subset follow the pattern of
the trope, this process may fail. In that case our system will
fall back to generating the default narrative (e.g., a story that
simply enumerates all actions in a given sequence).

Text generation The communicative primitives for text
generation contain references to properties of characters and
actions in the story. The text realizer translates these prim-
itives into requests for sentences according to defined pat-
terns. It then hands these over to a microplanner that per-
forms basic text transformations like aggregation, pronom-
inalization, adding connectives, and selection of the cor-
rect tense and conjugation. The web service uses Sim-
pleNLG (Gatt and Reiter 2009) for final text realization.

Map generation Maps are generated using ArcGIS (ESRI
2016) with a custom map for the DOTA 2 game map,* and
custom glyphs to represent the characters in the game and
their actions. To fully utilize the capabilities of maps as a
communicative medium, the communicative primitives for
the maps also include an option to convey the positions of
actors in addition to showing their actions. The rendering of
the map places the characters and their actions at the appro-
priate locations, automatically determines the zoom level in
the map, and adds a legend and an overview map for orien-
tation.

“DOTA 2 uses only a single map in which all games are played.

Film generation To generate cinematics, the discourse
planner determines which actions should be filmed and what
shot type to use for each of those actions. For example, cer-
tain team fights are best shown using a crane shot that shows
an overview of what is happening, while character or group
movement is typically filmed by dollying the camera along
with the moving character(s). To achieve these shots, our
system translates discourse plan steps into a camera shot
specification language, Oshmirto, used by our cinematic ren-
dering engine, FireBolt (Thorne et al. 2017). FireBolt also
takes as input the set of story actions used by Bardic for the
given domain and a cinematic model which maps logical ac-
tors and actions to renderable 3D models and associated an-
imations. FireBolt then iterates over the requested shots and
determines how to film them. For each shot, FireBolt must
determine where to place the camera in accordance with the
request. It chooses an ideal location for a given shot based
on requested shot attributes such as subject, f-stop, and lens
focal length. FireBolt then performs a raycast to determine
whether view of the subject is obstructed. If an obstruction is
detected, the engine searches locally around the ideal cam-
era location for a new camera placement with the subject in
view.

To create cinematics that more effectively convey the
actions from the underlying storyworld domain, FireBolt
makes use of virtual actors, objects and a virtual set that
recreates its domain as closely as possible. In our DOTA
2 example, FireBolt uses a virtual set that recreates the
DOTA 2 map within the Unity game engine. Character mod-
els from DOTA 2 and their animations are also used by Fire-
Bolt.

Generated Artifacts and Discussion

The main characterization of our system comes from observ-
ing the output and informally gauging its aesthetic qualities.
In this section we will show several output examples and de-
scribe how they exhibit desirable qualities. Figure 4 shows
a map output for a simple scene that focuses on one charac-
ter. Here, the moves that are shown are on a relatively high
granularity and the map describes how the character moved
from the western jungle region of the map to the center. The
overview map in the bottom right helps viewers to place the
scene on the larger map, and the legend provides additional
information for those not familiar with the game.

Table 1 shows the first few sentences of a generated text
narrative of a scene involving multiple characters. As can be
seen, the structure of the text follows a setup (“Wisp was
a hero”) and then lists the character’s actions using the ap-
propriate temporal or causal connectives (“At the same time,
Wisp killed the Radiant bottom ancient tower,” “Next Wisp
killed an unknown creep because Wisp damaged the Radiant
bottom ancient tower for 25 damage.”). Use of these con-
nectives is driven by the Impulse model’s explicit represen-
tation of the corresponding temporal, causal and intentional
relationships between actions. In some cases, using tropes
can focus the narrative by restricting its content to focus on
the actions relevant to the trope’s structure. Table 2 shows
a sample of a text narrative that uses the Failure Montage

Wisp was a hero. Skywrath Mage was a hero. Dazzle was a
hero. Skywrath Mage cast a frostbite spell on Pudge for 234
damage. Meanwhile, Dazzle healed himself for 25 damage.
Then Skywrath Mage damaged a Radiant bottom ancient tower
for 30 damage. Next Dazzle healed himself for 25 damage. Next
Wisp killed an unknown creep because Wisp damaged the Radi-
ant bottom ancient tower for 25 damage. At the same time, Wisp
killed the Radiant bottom ancient tower. Then Dazzle healed
himself for 25 damage. Next he moved from the Middle Outer
Radiant Tower to the Middle Inner Radiant Tower.

Table 1: The start of a text narrative. In the DOTA 2 domain,
the term “unknown creep” refers to a type of computer-controlled
helper character. The term “Radiant” is the name of one of the two
teams of players in the conflict.

Dazzle was a main-actor. He damaged Crystal Maiden for 22
damage with a poison touch. Then he moved from the Radi-
ant Base to the Bottom Inner Radiant Tower. Next he damaged
Crystal Maiden for 22 damage with the poison touch. Then he
killed her because he damaged her for 22 damage with the poi-
son touch. Next he healed Wisp for 25 damage. Then he died.

Table 2: Text narrative generated using the Failure Montage
trope. This could be considered a success if the goal was
killing Crystal Maiden, but from the goal of staying alive it
is a failure.

trope to convey a character attempting to achieve some goal
and ultimately failing.

Legend
Actors
e Pudge
(Radiant)
Relocate
Move

Figure 4: An example showing an automatically generated map.
In this map, the movement of the character Pudge is shown along
two distinct paths.

As for cinematic shot selection, Figure 5 shows the char-
acter Mirana on her tiger in a shot over her shoulder as she
fires an arrow at an enemy character. This shot type was
chosen by the system to show the attack action. In con-
trast, to show several characters moving at once, the system
produced the crane shot shown in Figure 6. As mentioned
above, this is not the only possible shot for moves. For in-

Figure 5: An automatically generated over-the-shoulder shot of
Mirana.

Figure 6: An automatically generated crane shot of three charac-
ters moving along a row of trees.

stance when a move involves only one character, a shot in
which the camera moves along with that character is used.

Finally, to illustrate our demo setup, Figure 7 shows the
cinematic rendered on a 21’ display. In the foreground,
a table-top touch display used as the system controller is
shown. This setup is particularly conducive to use by a team
or larger group of users interested in reviewing the narrative
output collectively.

Discussion

The Bardic system generates text, map and video narratives
characterizing stories based on video game logs. However,
these capabilities did not come without obstacles or limita-
tions. First, while our data source has many desirable proper-
ties, the binary format has not been fully reverse engineered,
so there are some actions that we can not extract. Second,
the amount of log entries in a typical DOTA 2 log makes pro-
cessing data from a full game log complex. A typical game
has around 60000 actions that we can extract in our Impulse
file, which translates to about 150MB of XML. While this is
not large for static analysis, using the full file as input, e.g. to
the discourse planner, would be computationally infeasible.

Our subset selection UI allows the user to select an inter-
esting part of the game in order both to show only relevant
information and to keep computation times reasonable. In its

Figure 7: Bardic running on a 21’ display using multi-screen table-
top touch screen controllers. The image shows a generated cine-
matic for the DOTA 2 domain.

present stage, the selection Ul can be used in real time, with
narrative generation taking between 2 — 10 minutes for sub-
sets of the game that correspond to about 2 minutes of game
time, depending on the complexity of the selected subset.

In terms of output, as the examples above show, there are
still areas for improvement. In some corner-cases the text-
output can contain sentences like “then a was”. These are
manifestations of actions that do not have sufficient infor-
mation to be realized as a complete clause or sentence, such
as actions with no actor. The text currently generated by
Bardic is limited in terms of features like aggregation, ef-
fective reference to the underlying Impulse temporal model,
and discourse-level structure that would facilitate abstrac-
tion or ellipsis in the description of action.

Map output like the one shown in Figure 4 provides a
good overview of character actions. Unfortunately, situa-
tions like the one depicted in which a character moves from
one part of the map to another are not the norm. In busy
fight scenarios, the maps get visually cluttered very easily.
Our current approach therefore uses the maps as an overview
only.

The biggest challenge for the video generation is camera
placement, because the planner is unaware of the scene ge-
ometry and may request shot types that cannot be fulfilled
in a satisfactory manner. For example, if the requested shot
is a medium shot and the character is surrounded by trees,
there may not be any place to put the camera to fulfill this
request. Our approach tries a number of possible positions,
but in such cases the view may be (partially) obstructed by
the trees. Another issue is in determining when an action
is shown multiple times. If we show one character attack-
ing another character, this may also show other actions in
the background. Determining when this exposition consti-
tutes actual communication to the audience and when the
background action should be filmed again separately is not
feasible in the general case. Our current approach is to as-
sume that none of the background action is communicated
and film every action that is to be shown.

Conclusion and Future Work

Bardic and its web services generate multimedia narratives
from game logs created by the game Defense of the Ancients
2. The system works by translating the game data into a
logic-based format called Impulse, which is then used by
intelligent planning systems and other modules to generate
narrative-focused visualizations, to support query capabili-
ties, and to aid users in identifying a scene of interest in a
given game. The main capability of our system is the gener-
ation of a narrative report in either text, map or video form
about the actions in that scene. The sample output discussed
above is illustrative of the kinds of reports users can produce.
Overall, the system represents a significant integration of
disparate intelligent tools to provide support for sensemak-
ing from large amounts of low-level event data. We hope to
see both direct applications (e.g., automatically generating
commentary or highlight reels for DOTA 2 or other games,
perhaps in an esports context) and wider-ranging contexts
(e.g., interactive tools for sensemaking in network analysis
or national security activities).

We are currently working to extend Bardic to support an-
other activity domain based on e-mail data from the ENRON
corpus (2004). This effort requires the development of auto-
mated processes to extract event data from the email cor-
pus and encode that data into the Impulse format. Further,
it requires the specification of templates for appropriate me-
dia realizations. We selected the ENRON corpus as a second
domain primarily because it characterizes a significantly dif-
ferent type of activity from the DOTA 2 logs. Through this
effort, we hope to increase the generality of Bardic by ex-
tending it to disparate domains.

In our future work, we hope to connect Bardic’s methods
more directly with the growing body of work on narrativiza-
tion — the generation of narrative from low-level data as a
way of conveying the data’s structure. For example, work
on generating narratives from sports data (Bouayad-Agha et
al. 2012; Lareau, Dras, and Dale 2011; Allen et al. 2010)
and from gameplay (Antoun et al. 2015) logs (Antoun et al.
2015; Gervas 2014b; 2014a; Mateas, Vanouse, and Domike
2000; Cheong et al. 2008a) focuses on challenges ranging
from the representation of event types, to identification of
interesting events/event sequences to the lexical realization
of the narrative summary, all challenges for extensions to
Bardic.

Another open research area is a modification of the mul-
timedia narrative generation to extend the set of tropes we
use as well as to better integrate the different media types
with one another. Work by Lehnert (Lehnert 1981) previ-
ously defined a set of plot units used in narrative generation,
and exploring the adaptation of some or all of those con-
cepts into new tropes may prove promsing. Futher, we plan
to modify the narrative generation process to integrate com-
municative content across media simultaneously, according
to which action is being communicated.

Additionally, in our current implementation, it is possible
for the narrative generator to request communicative actions
which the media realizer is unable to fulfill properly (e.g.,
camera shots for which there is no occlusion-free camera po-
sition). We hope to address this by developing bidirectional

communication between the discourse planner and the me-
dia realizer, allowing the planner to adapt a discourse plan
accordingly (Ronfard and Szilas 2014).

Acknowledgements

The authors wish to thank Nathan Brown, Scott Carpen-
ter, Mark DeMaria, Alyssa Knoll, Jeff Ligon, Max Litvinov,
Trey Overman, Aaron Quidley, Nishant Rodrigues, John
Slankas, David Winer, and Donnie Wrights for their work
on Bardic.

Acknowledgements

This material is based upon work supported in whole or in
part with funding from the Laboratory for Analytic Sciences
(LAS). Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the LAS and/or
any agency or entity of the United States Government.

References

Allen, N.; Templon, J.; Summerhays McNally, R.; Birn-
baum, L.; and Hammond, K. 2010. Statsmonkey: A data-
driven sports narrative writer. In AAAI Fall Symposium:
Computational Models of Narrative.

André, E., and Rist, T. 1995. Generating coherent presenta-
tions employing textual and visual material. Artificial Intel-
ligence Review 9(2):147-165.

Andre, E.; Finkler, W.; Graf, W.; Rist, T.; Schauder, A.; and
Wabhlster, W. 1993. WIP: The automatic synthesis of multi-
modal presentations. In Maybury, M., ed., Intelligent Multi-
media Interfaces, 75-93. AAAI Press.

Antoun, C.; Antoun, M.; Ryan, J.; Samuel, B.; Swanson, R.;
and Walker, M. 2015. Generating natural language retellings
from prom week play traces. In Workshop on Procedural
Content Generation in Games.

Barot, C.; Potts, C. M.; and Young, R. M. 2015. A tripartite
plan-based model of narrative for narrative discourse gener-
ation. In Proceedings of the Joint Workshop on Intelligent
Narrative Technologies and Social Believability in Games
at the 11th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 2-8.

Bouayad-Agha, N.; Casamayor, G.; Mille, S.; and Wanner,
L. 2012. Perspective-oriented generation of football match
summaries: Old tasks, new challenges. ACM Transactions
on Speech and Language Processing (TSLP) 9(2):163-182.

Bruner, J. 1991. The narrative construction of reality. Criti-
cal Inquiry 1(18):1-21.

Cheong, Y.; Jhala, A.; Bae, B.; and Young, R. 2008a. Au-
tomatically generating summaries from game logs. In Pro-

ceedings of Conference on Al and Interactive Digital Enter-
tainment, 167-172.

Cheong, Y.-G.; Jhala, A.; Bae, B.-C.; and Young, R. M.
2008b. Automatically generating summary visualizations
from game logs. In Proceedings of the Conference on Al
and Interactive Digital Entertainment, 167-172.

Eger, M.; Barot, C.; and Young, R. M. 2015. Impulse: A
formal characterization of story. In Proceedings of the 6th
Workshop on Computational Models of Narrative, 45-53.

ESRI. 2016. ArcGIS.
http://www.arcgis.com/.

Feiner, S. K., and McKeown, K. R. 1991. Automating the
generation of coordinated multimedia explanations. Com-
puter 24(10):33-41.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 5:189-208.

Gatt, A., and Reiter, E. 2009. SimpleNLG: A realisation
engine for practical applications. In Maybury, M., ed., Pro-
ceedings of the 12th European Workshop on Natural Lan-
guage Generation, 9093. AAAI Press.

Gervas, P. 2014a. Composing narrative discourse for sto-
ries of many characters: A case study over a chess games.
Literary and Linguistic Computing.

Software available at

Gervas, P. 2014b. Metrics for desired structural features for
narrative renderings of game logs. Entertainment Comput-
ing 5(4):245-250.

Jhala, A., and Young, R. M. 2010. Cinematic visual dis-
course: Representation, generation, and evaluation. IEEE
Transactions on Computational Intelligence and Artificial
Intelligence in Games 2:69-81.

Klimt, B., and Yang, Y. 2004. The enron corpus: A new
dataset for email classification research. In Proceedings
of the 15th European Conference on Machine Learning,
217226.

Lareau, F.; Dras, M.; and Dale, R. 2011. Detecting interest-
ing event sequences for sports reporting. In Proceedings of
the 13th European Workshop on Natural Language Genera-
tion, 200-205.

Lehnert, W. G. 1981. Plot units and narrative summariza-
tion. Cognitive Science 5(4):293-331.

Mateas, M.; Vanouse, P.; and Domike, S. 2000. Gener-
ation of ideologically-biased historical documentaries. In
National Conference of the American Association for Artifi-

cial Intelligence, 236-242.

Molina, M., and Flores, V. 2012. Generating multimedia
presentations that summarize the behavior of dynamic sys-
tems using a model-based approach. Expert Systems with
Applications 39(3):2759-2770.

Ronfard, R., and Szilas, N. 2014. Where story and media
meet: computer generation of narrative discourse. In Pro-
ceedings of the 5th Workshop on Computational Models of
Narrative, 164176.

Thomas, J., and Young, R. M. 2010. Annie: Automated gen-
eration of adaptive learner guidance for fun serious games.
IEEE Transactions on Learning Technologies 3(4):329-343.
Thorne, B., and Young, R. M. 2017. Generating stories that
include failed actions by modeling false character beliefs. In
Working Notes of the AIIDE Workshop on Intelligent Narra-
tive Technologies.

Thorne, B.; Winer, D. R.; Barot, C.; and Young, R. M. 2017.
Firebolt: A system for automated low-level cinematic narra-
tive realization. Technical report, Entertainment Arts and
Engineering Program, University of Utah, Salt Lake City,
UT. EAE Technical Report 2017-004.

Valve Corporation. 2013. Defense of the ancients 2. Video
Game, PC.

Wahlster, W.; Andr, E.; Finkler, W.; Profitlich, H.-J.; and
Rist, T. 1993. Plan-based integration of natural language and
graphics generation. Artificial Intelligence 63(1-2):387—
427.

Ware, S. G., and Young, R. M. 2011. CPOCL: A narrative
planner supporting conflict. In In Proceedings of the 7th
AAAI Conference on Atrtificial Intelligence and Interactive
Digital Entertainment, 97102.

Young, R. M. 2017. Sketching a generative model of inten-
tion management for characters in stories: Adding intention
management to a belief-driven story planning algorithms. In
Working Notes of the AIIDE Workshop on Intelligent Narra-
tive Technologies.

