OGrES Welcome! Toward a Systematic Theory for Serious Game Design

Nancy N. Blackburn
Rogelio E. Cardona-Rivera
nancy.n.blackburn@utah.edu
rogelio@eae.utah.edu
Laboratory for Quantitative Experience Design, School of Computing and the Entertainment Arts and Engineering Program, University of Utah
Salt Lake City, Utah, USA

ABSTRACT
Despite the vast scholarship around serious games, there is still no consensus methodology for how to best go about designing them. This paper presents work-in-progress toward synthesizing an actionable, systematic serious game design theory. We introduce mIBO as a computational model to aid in thinking about game design processes and rationales, and OGrES as a method for defining the function of a serious game.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation methods; Interaction design theory, concepts and paradigms;
• General and reference → Design; • Software and its engineering → Software design techniques; • Applied computing → Computer games.

KEYWORDS
serious game design, serious games, taxonomy, games beyond entertainment, meaningful play, design theory, design science

ACM Reference Format:

1 INTRODUCTION
Several studies have shown serious games to be useful tools. For example, a meta-analysis on educational games and interactive simulations [36] demonstrated that these educational technologies produced greater positive attitudes toward the subject matter, had “significantly higher cognitive gains… versus traditional teaching methods,” and when given a choice, users preferred the interactive simulations and games over traditional studies. Interestingly, this meta-analysis also found that the technologies need not be high fidelity in order to be effective, but that there was a positive correlation between increased realism and increased learning. Other analyses broadly converge on the same findings [9, 12, 16, 28].

We are interested in improving serious game effectiveness through a study of their design. However, while several methodologies exist [5, 7, 33], there are no converged-upon recommendations for serious game design. This leaves designers wondering how to design serious games to achieve the positive effects reported in the literature: what tools should be employed and when? where does one start in the design process?

To us, lack of convergence is due to the serious game design process being under-defined. Such a process ought to accommodate (at least) various genres of games—e.g., puzzle, role-playing (RPG), platformer. The process should also accommodate the various objectives one might use serious games for—e.g., awareness, education, training. We posit that better understanding serious game design activities will lead to more effective achievement of our serious objectives. That is the end goal of this work: to build a systematic theory that guides designers toward achieving a serious game’s intended function reliably, predictably, and with maximum impact.

We seek to make the serious game design process more clear by rooting it within the situated Function-Behavior-Structure (sFBS) design activity framework [14]. This framework defines domain-independent activities that occur during design. It also conceptually models how designers move between these activities. While the activities do not need to happen in any particular order, they are deemed necessary to every design process. In this paper, we discuss these activities in the context of serious games, and define one activity’s Input and Output within a more precise serious game design computational model for our systematic Serious Game Design Theory (sSGDT).

Contributions: This paper presents three theoretical contributions. First, we explain how sFBS is useful to serious game design. Second, we make sFBS more computationally precise via mIBO through which we modeled serious game design activity. Third, we use mIBO to help us articulate OGrES—our proposal for the dimensions needed to define the Function of a serious game.

2 RELATED WORKS
Here, we review literature closest to our efforts in identifying or articulating a serious game design methodology. While excellent, current literature focuses on too fine of a detail of one aspect of the design process, without ever relating it to the other intertwined
parts. We wish to address the design process in specific as well as in general.

For example, the work by Murphy-Hill et al. [30] covers differences between video game software development and other kinds of software development. There is no discussion of software-agnostic design concerns, nor serious game-relevant design concerns. Other work by Khaled et al. [20] focuses on how to document the design process, indirectly chronicling one design case study. Their work could refine the theory we synthesize here, but does not directly synthesize a design theory per se. Similarly, O’Donnell [31] presents extended grounded research on how video game developers work within the industry, including extensive details of their environment, and creative and collaborative process. We view our theory as consistent with more-grounded accounts, which have not yet been synthesized into a more general theoretical framework. More recently, El Arroum et al. [11] created a “generic game-based design model” based on a thematic synthesis approach. This model addresses one way a designer could approach designing the structure of an educational game. Their model is rooted in the game elements of time and score, and speaks more specifically to the practice of gamification [6] rather than broader ideas of what games could be. Indeed, many games do not even have a time or a score [38], leaving games without said facets unclear in the design activity.

Serious game design in particular has received considerable attention, due to the perceived conflict between serious- and game-centric design goals. Within serious games for education, this tension was originally termed chocolate-dipped broccoli [3]. The term arises because broccoli (education, which we extend to other serious objectives) is healthy but not delicious and seemingly needs to be dipped (or smothered) in delicious but not healthy chocolate (game and game-like features), for the purpose of making broccoli more appetizing. However, we—like others [3, 10]—posit that chocolate-covered (in any amount) broccoli need not be a fundamental tension in serious game design (education focused or otherwise).

Within education, Moreno-Ger et al. [29] examined several situated pedagogical factors that may impact the design of serious games. They created a design methodology for online education by taking into account interactions the game has with students, the Learning Management System, teachers, within the classroom, and with parents. They did not comment on other types of serious games. Further, their process is rooted in starting with the game genre in order to bring education and game elements together, whereas in our work this need not be the case.

Beyond education, Rau et al. [32] defined a “subgoaling” methodology that can be used throughout the design process to resolve conflicts within serious game design. Our work is consistent with theirs, and subgoaling can readily be an activity carried out within our framework. Relatedly, Altizer and Zagal [2] defined The Design Box methodology for ideation with an emphasis on pitching—the practice of trying to convince others to support the development of a (game) project. The Design Box argues for articulating constraints on the design process up front, prior to articulating game ideas to be pitched (and subsequently, developed). Some of these constraints reflect the intent of the game’s design, which includes the potential for serious games. We subsume their work as one way in which a designer can formulate their design within a broader design activity.

3 THEORETICAL BACKDROP FOR DESIGN

We posit that serious game design is a wicked design problem [4]: there is an infinite solution space and many contributing factors that are often incomplete, dynamic, and/or difficult to define. This makes intentionally creating a desirable outcome deeply complex. We propose that computational models—computationally-precise mathematical abstractions—can help us deal with the complexity.

3.1 mIBO: Magic Input-Behavior-Output Model

A computational model is in essence a mathematical function—e.g. \(f(x) \)—that describes a phenomenon on the basis of three concepts that define a system: Input (I), Output (O), and Behavior (B). The Input (in \(f(x) \), the \(x \)) describes facets of an environment relevant to the phenomenon but external to it. The Output (in \(f(x) \), the resulting value itself) describes facets of an environment that the phenomenon bears relevance to. The Behavior (in \(f(x) \), the \(f \)) describes how Inputs are mapped onto Outputs. When applied to model design phenomena, we posit that I, B, and O primarily refer to information that is mentally (e.g. via brainstorming) or physically (e.g. via prototyping) manipulated and enacted.

As discussed, serious game design relies on information that is challenging to articulate. Further, design behaviors (i.e. acts in designing) have many methodologies. To acknowledge this, we refer to our computational model as the magic Input-Behavior-Output model, or mIBO (pronounced “my-bow”). Our model is primarily a theoretical tool, and is illustrated in Equation (1).

\[
\text{Input} \rightarrow \text{B:Behavior} \rightarrow \text{O:Output} \tag{1}
\]

This theoretical tool is a fundamental axis of our work: for a given design activity we hypothesize that the better we understand the \(m \) behind the \(I \) and the \(B \), the better we will be able to intentionally bring about our desired \(O \).

Our work-in-progress is to employ the mIBO model to help us more precisely understand the behavior of various design methodologies and the flow of information as we design. At the same time, we note an important caveat: in mathematics, functions are well-defined. In other words, if we input \(x \) into \(f(x) \) and \(h(x) \) and they yield the same \(y \) for all \(x \) within our domain, then \(h(x) \) is equivalent to \(f(x) \). We posit this may not always be the case for behavior knowledge representations outside of well-defined mathematical functions, particularly for wicked problems [17].

3.2 sFBS in terms of mIBO Applied to Serious Game Design

The sFBS framework is a theoretical tool that was developed in the design sciences to better understand the process of design. The FBS part is made up of five kinds of design information (originally termed variables) and eight processes that transform information (Fig. 1). The kinds of information we manipulate during serious game design are:

- \(F \): Function, i.e. what we want to accomplish with our serious game.
- \(B \): Behavior, of two kinds: 1) \(B_e \): the expected Behavior, or gameplay we hope will lead to achieving \(F \), and 2) \(B_s \): the Behavior from structure, or gameplay that actually results when people play our serious game.

\[
\text{F:Function} \rightarrow \text{B_e:Behavior} \rightarrow \text{B_s:Behavior} \tag{2}
\]

\[
\text{Inputs} \rightarrow \text{Behavior} \rightarrow \text{Outputs} \tag{3}
\]
OGrES Welcome! Toward a Systematic Theory for Serious Game Design

CHI PLAY ’21, October 18–21, 2021, Virtual Event, Austria

FBS formulation processes drawn in terms of mIBO.

Figure 1: The FBS elements of the sFBS framework, drawn in terms of mIBO. Nodes encapsulate design information, and directed edges transform information from source to sink. While drawn as separate for clarity, the graphs are connected via shared nodes.

- S: Structure, i.e. the composed serious game artifact that results from design (e.g. associated code, art assets).
- D: Design Description. Describes the artifact’s structure.

The processes model how designers flow between the variables. Per mIBO, each is a behavior; the variables they transform are either input or output as appropriate. The first five formulation processes (FP) are (Fig. 1a):

FP1: Conceptualization. Transforms design requirements of F into Be.
FP2: Synthesis. Transforms Be into an S intended to exhibit Be.
FP3: Analysis. Derives Bs that follows from S (e.g. play testing).
FP4: Evaluation. Compares Bs to Be to check if S is acceptable.
FP5: Documentation. Provides a D to construct or manufacture artifact.

The last three reformulation processes (RP) are utilized when the Structure is deemed unacceptable to the designer, and typically occurs via FP3: Analysis or FP4: Evaluation. These are (Fig. 1b):

RP1: Exploration: changes S only. This is exploratory creativity [25].
RP2: Transformation: changes Be, but not S. This is transformational creativity [25].
RP3: Re-Framing: changes F, re-conceptualizing goals/purpose of artifact, as in Framing from reflection-in-action [8].

While FBS is useful to think about serious game design activities, designers do not operate in a vacuum; they are situated. That is, FBS activities are contextualized by the various worlds in which they take place (Fig. 2). This contextualization results in sFBS, which models three worlds: 1) the external (We) or material world in which a design is to be deployed, 2) the interpreted (Wi) or mental world the designer is using to enact design solutions, and 3) the expected (Wie) or idealized/imagined world made different through an envisioned design. These worlds situate the FBS variables; i.e. sFBS contains Fe, F1, F′e, Be, Be′, etc. Our computational model is the interface of sFBS and mIBO, which we term the systematic Serious Game Design Theory (sSGDT).

4 SSGDT PART ONE: FUNCTION → CONCEPTUALIZATION → EXPECTED BEHAVIOR

Articulating all of our proposed sSGDT is too broad to tackle in one paper. Instead, we aim to model how we transform Function (F) into expected Behavior (Be). That is, we aim to be more precise about the following mIBO model:
F:Function \rightarrow FP1: Conceptualization \rightarrow Be:Expected Behavior (2)

Specifically, we propose a methodology to identify the information that constitutes F. Our methodology is called OGrES, as it asks designers to define four aspects of their game: 1) O: Objective(s) of Meaningful Play, 2) Gr: Game Rationale, 3) E: Enforced Constraint(s), and 4) S: Subject Domain. We offer a typology for each dimension, to help designers articulate the respective aspects. OGrES and its typologies were distilled from an inductive synthesis, which includes: case examples, several serious game taxonomies and typologies [15, 34], and the first author’s game design experience. OGrES is summarized in Table 1.

4.1 OGrES: A Methodology to Define a Serious Game’s Function

OGrES is an in-progress conceptual tool that offers one way to explicitly state a serious game’s Function. It answers “what should the game do?” in parts; each part focuses on a different dimension of the game that we estimate will drive the conceptualization of the Behavior expected to accomplish said Function. Per prototype theory [21], we acknowledge our distinctions have fuzzy boundaries and expect our ideas will be refined. We discuss the dimensions in turn.

4.1.1 Objective (of meaningful play). The Objective is what the game is for. We liken this to learning objectives from instructional design [24]. While not all serious games have learning objectives we posit they do have at least one objective. We also suspect more than 3 objectives would lead to tension: designers may be unsure of what to focus on, potentially resulting in the artifact not meeting some or all of its objectives. Our Objectives typology includes:

Learning. Where the primary objective is to develop new concept understanding and/or skills within a Subject Domain. These games are commonly referred to as “educational games” or “games-based learning.” Further, many games have a learning aspect (e.g. tutorials and on-boarding to teach players how to play the game), which we do not include in this Objective. Learning games have a set instructional design (whether implicit or explicit) and will frequently employ scaffolding and/or intelligent tutoring system-like algorithms, among others, to support player learning. An example of an educational game is DragonBox [22], which aims to teach children algebraic principles.

Training/Conditioning. Where the objective is to practice, rehearse, and/or improve skill(s) within a Subject Domain. These games are commonly referred to as “edutainment” or “simulation” [9]. We include “conditioning” in the title because these games can be thought of as helping to improve a player’s “condition” (or “fitness”) in a domain. Examples of training games include: typing games [13, e.g.], dance games, exergames, and pilot simulations [27, e.g.].

Awareness. Where the objective is elicit introspection, reflection, and/or extrospection in the player about something (e.g. implicit bias, gender inequality) in a Subject Domain. An example of an awareness game is Papers, Please [23].

Persuasive. Where the objective is to elicit a change in belief in the player, based on a particular viewpoint reflected in the game. Examples of these types of games would be advertisement or political campaign games.

Medicinal. Where the objective is designed for improving physical well-being, by making players better doctors (in terms of applying health science for a population) or patients (in terms of managing their own afflictions). While it can be thought of as Learning/Training in a medical Subject Domain, it also includes games whose objective is to improve physical well-being through playing. For example, better managing pain by playing during surgery.

Therapeutic. Where the objective is as in Medicinal, but where the focus is on mental (as opposed to physical) well-being. An example is an exposure therapy game in virtual reality for overcoming arachnophobia [28].

Research. Where the objective is to increase or refine the body of knowledge in a Subject Domain. They may be form of crowd-sourcing games to improve data collection [35], or help with space exploration [1].

Assessment. Where the objective is to measure some aspect of the game’s player during gameplay. For example, a game that assesses a player’s skill level for therapy [18], or their personality based on in-game activity [26].

4.1.2 Subject (domain). The Subject Domain is what the game is about. Each example within the Subject Domain box of Table 1 can be more specific than listed, and the designers can select as narrow a version of their domain as is necessary. For example “Change” can include social, political, ethical, public opinion, and the like.

4.1.3 Game rationale. The Game Rationale addresses the question: “why make this a game?” This question subtly reveals a theoretical orientation to our work: that serious games need to be perceived as games by their audiences.

Serious games are often distinguished from non-serious games in that their objective transcends “entertainment,” with some scholars arguing that serious games need not be “fun” [11]. Paradoxically, we—like others [3]—have also observed scholars justify why they sought to treat a Subject Domain through a serious game by appealing to qualities that stem from their entertaining nature. These qualities are thus different potential rationales for seeking to make a serious game, which include improving effectiveness in achieving the Objective [9] (e.g. because of their cognitive demand, and constructivist interaction/learn-by-doing [36]), as well as engagement and motivation to engage the Subject Domain [9]. Rationales presume a baseline method to achieve the same Objective, which suggests a default success criterion for a serious game’s design.

4.1.4 Enforced (constraints). Enforced Constraints are (internal or external) conditions that must be met as part of every acceptable design solution in order to achieve our design goals. Examples include, but are in no way limited to, audience (e.g. accessible to children 5-8 years old), or accessibility (e.g. specific controllers required).

4.2 Expected Behavior: A Game Pitch

The aim of FP1: Conceptualization is to conceptually understand the expected Behavior of our serious game. This encompasses the
Table 1: OGrES, a method for defining a Serious Game’s Function; i.e. the combination of OGrES’ elements into one statement.

<table>
<thead>
<tr>
<th>Objective (of meaningful play)</th>
<th>Subject (domain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning</td>
<td>Education Subjects</td>
</tr>
<tr>
<td>Training / Conditioning</td>
<td>Complex Skills (e.g. pilot)</td>
</tr>
<tr>
<td>Awareness</td>
<td>Health</td>
</tr>
<tr>
<td>Persuasive</td>
<td>Change (Public Relations)</td>
</tr>
<tr>
<td>Medicinal</td>
<td>Entertainment</td>
</tr>
<tr>
<td>Therapeutic</td>
<td>Advertising, Market Analysis</td>
</tr>
<tr>
<td>Research</td>
<td>I/O Psychology</td>
</tr>
<tr>
<td>Assessment</td>
<td>Sector (private/public)</td>
</tr>
</tbody>
</table>

Game rationale

<table>
<thead>
<tr>
<th>Engagement</th>
<th>think deeply about the domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td>replayability (keep coming back)</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>improve over base means along a metric</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enforced (constraints)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Controllers (e.g. Sip & Puff)</td>
</tr>
<tr>
<td>Specific Platforms (e.g. PC, mobile)</td>
</tr>
<tr>
<td>Aesthetic</td>
</tr>
</tbody>
</table>

experience(s) the designer wants the player to have, including: emotions elicited, gameplay experienced, and (for serious games especially) the accomplishment of the Objective.

We propose that at minimum, one such output may be a game pitch [2]. Of course, beyond pitching lies significantly more work with different transformation of design information (i.e. the rest of the sFBS processes). Defining these is beyond the scope of this paper and will be addressed in future work.

4.3 The Design Box: A Tool for Conceptualization

With the serious game’s input Function and output expected Behavior defined, we move on to FPI:Conceptualization itself—the mapping of input to output. As we have noted, there may be many ways to go about this conceptualization. Given our stated input and output, we propose that the Design Box (DB) [2] methodology is a reasonable candidate. While we cannot fully describe it due to space, we restate the critical elements below.

\[
\text{Input: Serious Game Function} \rightarrow \text{Behavior: Design Box} \rightarrow \text{Output: Game Pitch}
\] (3)

The DB is a tool that helps in ideation. It relies on four walls, or constraint kinds, that define its contour. These constraints are properties our design solution must meet. Once defined, game ideas that satisfy all constraints are pitched, and placed inside the box. The four kinds of constraints are: 1) Technology—Platform, software, licenses, etc., 2) Aesthetic—The emotional/cognitive experience the designer wants the player to have, 3) Audience—Who the game is intended for, and 4) Theory—Which fills in the blank in “The game is supposed to (blank).”

A previously defined Function will fill in the theory wall with the exception that enforced constraints may fill in other walls as well. For example, an enforced constraint of a “Sip and Puff” – a controller for disabled persons that allow them, through a series of sips and puffs, to control various apparatuses such as skis and sailboats—goes on the Technology wall. While during pitch meetings other walls may vary, the Theory wall for sSGDT should mostly remain the same. If the Function needs to change because it has been too loosely or too strictly defined, then designers should consider restarting to define the Function.

5 CASE EXAMPLE AND FUTURE WORK

We briefly discuss a serious game created by the first author, called Family Photo Fun. This serious game is about teaching children how to make correct ethical decisions in real life. The child would pick a family photo, and a quick story and ethical dilemma would be presented to them. They would then get to choose what to do between a “right” and “wrong” choice. If they chose “wrong,” the narrator would gently tell them what would happen (the consequences of their choice for them and their family), were they to actually make that decision. The game would then allow them to pick the “right” with similar effect, leading to a family picture being added to their album. This game was part of the Waterford Institute’s pre-Kindergarten curriculum learning app, used in schools throughout the United States [37].

The Function for Family Photo Fun would be defined as follows:

- **O**: 1) The primary objective was learning: to teach children correct ethical behaviors in various situations. 2) A secondary objective then was to persuade the children to make correct ethical decisions in real life.

- **Gr**: Engagement: we wanted the kids to think deeply about the consequences of their choices in the game. The aim was that it would effectively persuade the children to make correct ethical decisions in real life.

- **E**: The game had to work on both iPad and WebGL.

- **S**: pre-Kindergarten ethics.

While we did not employ the DB in Conceptualization when designing Family Photo Fun, our pitch’s details can be detailed as follows:

- **O**: The primary objective was learning: to teach children correct ethical behaviors in various situations. 2) A secondary objective then was to persuade the children to make correct ethical decisions in real life.

- **Gr**: Engagement: we wanted the kids to think deeply about the consequences of their choices in the game. The aim was that it would effectively persuade the children to make correct ethical decisions in real life.

- **E**: The game had to work on both iPad and WebGL.

- **S**: pre-Kindergarten ethics.
• Pitch: A young narrator learns about ethics by recalling family events and presenting ethical dilemmas to the player who then chooses what to do. The player is rewarded for correct decisions, and allowed to pick the right choice after learning about the consequences of the wrong one.

• Technology: iPad and WebGL (Given by the function definition above).

• Aesthetic: A positive experience. This was achieved by rewarding the player with the correct choice, and by letting the player know the consequence of the incorrect choice but allowing the player to then choose the right choice afterwards and receive the positive reward.

• Audience: pre-Kindergarten students.

• Theory: The game’s purpose is to teach children about the consequences of unethical decisions which will then help children make correct ethical choices when faced with an ethical dilemma in real life.

What we have talked about thus far is an examination of only a small part of design activity within serious games. There is much left to do for this theory; the next step in the process is examining the next parts of the design activity within sBS and how they apply to serious game design. Future work would also include a critical analysis of sSGDT as a tool for design; we intend to do so as part of a serious game artifact we are currently developing.

We also posit that sSGDT offers an interesting lens for critically examining serious games, and their design methodologies and frameworks. Our discussion thus far offers a glimpse of sSGDT’s utility in that respect.

Finally, we revisit our earlier point that serious game design is a wicked design problem. Designers face far too many decisions to then choose what to do. The player is rewarded for correct decisions, and allowed to pick the right choice after learning about the consequences of the wrong one.

REFERENCES

