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Abstract

Interactive narratives suffer from the narrative paradox:
the tension that exists between providing a coherent nar-
rative experience and allowing a player free reign over
what she can manipulate in the environment. Knowing
what actions a player in such an environment intends to
carry out would help in managing the narrative paradox,
since it would allow us to anticipate potential threats to
the intended narrative experience and potentially medi-
ate or eliminate them. The process of observing player
actions and attempting to come up with an explanation
for those actions (i.e. the plan that the player is trying
to carry out) is the problem of plan recognition. We
adopt the framing of narratives as plans and leverage
recent advances that cast plan recognition as planning
to develop a symbolic plan recognition system as a
proof-of-concept model of a player’s reasoning in an
interactive narrative environment. In this paper we
outline the system architecture, report on performance
metrics that demonstrate adequate performance for non-
trivial domains, and discuss the implications of treating
players as plan recognizers.

Introduction
Interactive narratives are systems that mediate a player’s
interaction within a virtual environment through a narrative
framing. These systems afford their players the opportunity
to step into a dramatic role to influence the development of
a storyline through their actions [Riedl and Bulitko, 2013].
This type of virtual environment has become increasingly
commonplace in educational, training, and entertainment
contexts, but remains a challenging task to develop. One
reason for this challenge is due to what Aylett [2000] calls
the narrative paradox: for an experience to count as a
story it must have some kind of satisfying structure, which
participants can directly affect and make incoherent.

One way to help ameliorate the narrative paradox
is to attempt to model the player’s reasoning process to
predict what goal the player intends to accomplish in the
game, as well as how the player aims to achieve that
goal. With that information, a drama manager [Nelson et
al., 2006] could potentially adapt the interactive narrative
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dynamically, making sure to avoid narratively undesirable
states, while guiding the player toward narratively desirable
ones. In this paper we present a proof-of-concept symbolic
plan recognition system within an interactive narrative.
While the plan recognition system attempts to find the
player’s plan given their actions, we use the system as a
proxy for the player’s reasoning process in an interactive
narrative. This is because we posit that as a player engages
with an interactive narrative, she is trying to perform plan
recognition herself by attempting to identify what author-
intended narrative plan she fits into. Our approach builds
upon prior work that represents narratives as plans [Young,
1999] from an automated planning context. We additionally
present the reasons why we represent players as plan
recognizers, as well as an evaluation of the plan recognition
system’s performance for a non-trivial domain.

Players in Interactive Narratives
The work outlined here is meant as a proof-of-concept of a
model of one aspect of a player’s reasoning in an interactive
narrative environment. Specifically, we care to characterize
the player’s story reasoning during her interactive narrative
experience: we would like to model what the player intends
to accomplish given her understanding of the story, her
perceived narrative role, and her perceived affordances to
act within the story context [Young and Cardona-Rivera,
2011]. In this section, we outline some of the implications
of considering players as plan recognizers within interactive
narrative contexts. Our focus here is on interactive narratives
from a player-centric perspective. We therefore look to what
some cognitive psychologists and narratologists tell us about
the way in which humans engage with narrative artifacts.

...as Problem Solvers
The concept of “gameplay” is difficult to precisely de-
fine [Salen and Zimmerman, 2003]. While we do not
care to weigh in on what gameplay is, we do care to
point out that a great deal of research work in interactive
narrative play tacitly assumes that the game player acts as a
problem-solver during gameplay [Roberts and Isbell, 2007;
Riedl and Bulitko, 2013]; that is, the player is assumed to
be reasoning forward through potential courses of action
toward a specific goal. Indeed, prior work [Young et al.,
2013] has cast a player’s experience of playing through



an interactive narrative as a deliberative problem solving
process, computationally represented in a classical planning
paradigm, which can be used to model key structural
aspects of narratives, including the causal relationship
between narrative events and the relative ordering between
them [Young, 1999]. In this view, a player monitors the
current world state, attempts to identify which planning
operators have their preconditions satisfied, and chooses
actions that lead to a desired world state. This view is
consistent with an empirical cognitive psychology account
of a person’s story understanding process: Gerrig and
Bernardo [1994] frame readers as problem solvers whereby
humans transport themselves into a story they are reading,
and attempt to solve the plot-related problems on behalf
of the protagonist(s). Given the mapping between narrative
structures and planning data structures and the psychological
experimental support, automated planning seems a natural
fit to characterize a player’s interactive narrative experience.

...as Plan Recognizers
However, according to the narratologist Herman [2013], a
key component of consuming a narrative is the ascription
of intentions on behalf of the audience to the narrative’s
author. This ascription is akin to Dennett’s [1989] stance:
in essence, when explaining and predicting the behavior
of an object, we can choose to view it at varying levels
of abstraction. Herman reviewed converging evidence in
cognitive psychology and narratology that support the idea
that when consuming a narrative, the default mode of as-
cription is in the intentional plane, where we are concerned
with beliefs, desires, and intentions (BDI) of an object to
explain its behavior. Herman [2013] claims that this level of
reasoning goes beyond the attribution of BDI to characters,
extending intentional attribution to the author herself. The
importance of this reasoning process to interactive narrative
play has been noted by Murray [1998] who stated that
interactive narrative designers must constrain a player’s
reasoning process to identify (in the context of their play
experience) the set of dramatically appropriate actions,
those that an interactive narrative expects the player to
execute to successfully advance the narrative experience.
Concordantly, players are expected to make their in-game
actions meaningful in the context of the designed experi-
ence; a designer affords a coherent experience if the player
behaves in coherent ways [Adams, 2013]. The reasoning
process by which players correctly identify the sequences of
action that successfully complete their narrative experience
(i.e. those intended by the game designer) is therefore key
during interactive narrative play. Ascription of intent in the
classical AI sense [Cohen and Levesque, 1990] involves
identifying the goal the agent (in our case, the author) is
attempting to pursue, and the corresponding plan that will be
pursued in service of the goal. In other words, players must
perform plan recognition a priori to being able to realize a
particular plan in an interactive environment. Put simply, a
player in an interactive narrative must identify how the game
wants her to proceed in order to bring about the plan that
achieves game progress. Plan recognition is a paradigm well
suited to computationally modeling this reasoning process.

Plan Recognition
In the plan recognition problem, we seek two things: a) the
goals that explain the observed actions (often referred to
as the goal recognition problem [Sukthankar et al., 2014]),
and b) the actions that will occur next in pursuit of the
expected goal [Carberry, 2001]. Plan recognition appears
in three different forms: a) plan recognition when the agent
is aware and actively cooperating in the recognition (called
intended plan recognition), b) plan recognition when the
agent is unaware of the recognition (called keyhole plan
recognition), and c) plan recognition when the agent is aware
of and actively obstructs the recognition process (called
obstructed plan recognition). Importantly, plan recognition
assumes a priori that there exist a set of possible goals Gi
that an agent cares to achieve. We denote the set of these
disjunctive goals as G = {G0, . . . , Gn}. Plan recognition
has historically operated over a plan library, a set of recipes
that record likely actions toward assumed goal states. In
this light, the plan recognition problem is to identify which
goal-recipe pair is the observed agent’s intended course
of action, given the actions that the agent has undertaken
in an environment. Recognizing that plan recognition is
planning in reverse, Ramı́rez and Geffner [2009] proposed
a novel way of casting the plan recognition problem that
avoids the need for a plan library: by assuming that an
observed agent in a plan recognition task will prefer optimal
plans (i.e. those plans with minimal cost), Ramı́rez and
Geffner proposed to compile the agent’s observed actions
as additional goals (to the set of assumed goals) that an
agent must plan for. As part of this compilation process, new
planning operators are added to the domain that uniquely
satisfy the observed action goals, effectively placing a lower
bound on the optimal plans in the compiled domain; i.e. the
agent must pursue plans in service of the assumed possible
goals that satisfy the observations that were identified in the
plan recognition task.

Definition 1. An action sequence π = a0, . . . , an satisfies
the observation sequence OBS = obs0, . . . , obsm if there
is a monotonic function f mapping the observation indices
j = 0, . . . ,m into action indices i = 0, . . . , n such that
af(j) = obsj .

This formulation of plan recognition depends on a model
of automated planning. We adopt a typical STRIPS-like
representation [Fikes and Nilsson, 1971], which has been
used to model key aspects of stories and the discourse about
them [Young et al., 2013].

Definition 2 (Planning Domain). A Planning Domain is a
triplet P = 〈F, I,A〉, with atoms F , initial state I ⊆ F , and
action operators A. A state is a conjunction of function-free
atoms that describe a state of the world. An action operator
is a template for an action that can occur in the world,
defined by preconditions and effects: preconditions describe
the conditions of the world that must be true in order for
the operator to execute, and effects describe the conditions
made true in the world via the execution of the operator.
Operators may contain variable terms to convey ideas such
as move(x, y) to convey “move from x to y”.



Figure 1: Plan recognition in a robot navigation domain
with initial position A, possible goals G = {C, I,K}, and
observed unit-cost actions move(A,B) and move(F,G).

Example
In lieu of the full description of how to achieve plan
recognition with planning, we present an example to help
explain the intuition behind the procedure. For this, we
leverage the example used by Ramı́rez and Geffner: plan
recognition in a robot navigation domain, illustrated in
Figure 1. In the original paper by Ramı́rez and Geffner,
there was an implicit assumption that we make explicit here:
recognized plans are represented by the goals they achieve,
i.e. there is only ever one optimal plan that achieves a given
assumed goal Gi ∈ G (if there exists more than one plan,
then the selection of which plan satisfies the observations is
done randomly). In Figure 1, the initial position of the robot
agent is given by the circle (the agent is in room A at the
start), and the possible goals for the agent are to be in any
one of the squared rooms C, I , or K. In addition, we have
observed the agent’s unit-cost actions of moving from room
A to room B, as well as moving from room F to room G.
Ramı́rez and Geffner [2009] frame a plan recognition task
as a plan recognition over a domain theory:
Definition 3 (Plan Recognition Theory). A plan recognition
theory is a triplet T = 〈P,G, OBS〉, where P = 〈F, I,A〉
is a planning domain, G is the set of sets of possible goals
Gi ⊆ F , and OBS = obs0, . . . , obsm is an observation
sequence with each obsi ∈ A.
The plan recognition theory T for the example domain is:
P =

F = {
at(x), denoting that the agent is at location x
adj(x, y), denoting that x is adjacent to y
A . . .K, denoting rooms A through K
}
I = {at(A)}, the agent is at room A
A = {move(x, y)}, the agent can move from x to y
(with preconditions and effects as in Figure 2)
G = {G0 = {at(C)}, G1 = {at(I)}, G2 = {at(K)}}
OBS = {obs0 = move(A,B), obs1 = move(F,G)}

Intuitively, the plan recognition compilation pro-
posed by Ramı́rez and Geffner creates two new actions
obsmove(A,B) and obsmove(F,G) from the input observations
of the plan recognition theory, as shown in Figure 2. The
action obsmove(A,B) that is created from the first observation

Figure 2: Observation compilation for the domain example
illustrated in Figure 1 adds two actions obsmove(A,B) and
obsmove(F,G) based on the operator move(x, y). Operators
are shown with their preconditions (left) and effects (right).

obs0 = move(A,B) has all the preconditions and effects
from the move(x, y) operator in A. However, the operator
is fully grounded with the preconditions at(A), adj(A,B),
and effects at(B) and ¬at(A). In addition, the operator’s
effects have been augmented with a fluent that denotes
that the operator has executed; in essence, the effect
pmove(A,B) reifies that the operator has happened. The
action obsmove(F,G) that is created from the second observa-
tion obs1 = move(F,G) is defined in a similar manner, with
the added precondition pmove(A,B), because the observation
of the action move(A,B) comes before the observation
of the action move(F,G). In addition to the expansion of
the planning domain operators, the compiled domain also
expands the existing set of assumed goals; each assumed
goal becomes a set of assumed goals, and is expanded
by the atoms representing the observed actions. Thus, the
transformed plan recognition theory T ′ is:

P ′ = 〈F ′, I ′, A′〉
F ′ = {
at(x), adj(x, y), A . . .K,
pmove(A,B), denoting that move(A,B) happened
pmove(F,G), denoting that move(F,G) happened
}
I ′ = {at(A)}
A′ = {move(x, y), obsmove(A,B), obsmove(F,G)},
G′ = {
G′0 = {at(C), pmove(A,B), pmove(F,G)},
G′1 = {at(I), pmove(A,B), pmove(F,G)},
G′2 = {at(K), pmove(A,B), pmove(F,G)}
}
OBS′ = {∅}

The solution to the plan recognition theory is then found
by identifying the plans of minimal cost that achieve the
respective assumed goals. Each pair (P, Gi) with Gi ∈ G
forms a planning problem that a planner attempts to solve.
The cost of any plan πi is denoted by c(πi) and is defined as
the sum of the cost of the actions that make up the plan:
c(πi) =

∑
ai∈πi

c(ai). In this implementation, only one
plan πi serves as the solution to a given planning problem,
such that goals uniquely identify planning problems. We



therefore use the notation c(Gi) to denote the cost of the plan
that achieves the Gi. Assuming unit costs for every action,
the cost of a plan will be the plan’s length. For the example
above, the cost for the plan to pursue each of the goals is as
follows: c(G′0) = 10, c(G′1) = 7, and c(G′2) = 7. Thus the
recognized plans are the plans that achieve G′1 and G′2.

Existing Approaches in Interactive Narratives
Existing approaches to activity recognition have either
focused on statistical approaches [Albrecht, Zukerman, and
Nicholson, 1998; Synnaeve and Bessière, 2011] or on the
related but distinct problem of goal recognition [Mott, Lee,
and Lester, 2006; Gold, 2010; Baikadi et al., 2013]. In order
to represent narratives as plans and perform plan recognition
given this knowledge representation, we developed a plan
recognition system that follows a more symbolic approach.
Our implementation of plan recognition leverages Ramı́rez
and Geffner’s [2009] intuition in a plan-based interactive
narrative context [Young et al., 2013].

The Plan Recognition Optimality Assumption
Our implementation of plan recognition assumes that the
observed agent will act optimally, which in our case means
that the agent (i.e. the player) will pursue plans of the
smallest possible cost to any goal from the state the agent
is observed to be in. To continue the previous example,
in Figure 1 the last action we have observed is the agent
transitioning from room F to room G. Since it is the
last action the recognizer knows of, the most conservative
assumption to make is that the agent is at room G. We
additionally know that from room G it is more costly to
return to room C than to continue to either room I or K.
Thus, the recognizer identifies plans to get to either room I
or K as optimal. In our current implementation, we assume
that the player is playing optimally with respect to executing
the shortest possible sequence of actions to achieve his or
her goal. This notion of optimality is idealized and we admit
that it is possible (and even likely) that players will play in
sub-optimal ways; exploratory behavior, for instance, would
be poorly modeled by our basic plan recognizer, since it
may involve several sub-optimal (vis-à-vis plan cost/length)
moves and repetition. While our assumption may not be
tenable in elaborate environments, we will not account for
this discrepancy in this work. Future work will address how
to relax this optimality assumption.

Implementation
We used an existing interactive narrative system called the
General Mediation Engine (GME) [Robertson and Young,
2014], a unified game engine and experience manager that
creates and manages gameplay experiences based on a
Planning Domain Description Language (PDDL) [McDer-
mott, 2000] domain and problem file, and a linear narrative
generator/planner. GME was embedded into a Unity1 game
environment for our prototype, where it linked game assets
to internally represented plan objects [Robertson and Young,

1http://unity3d.com

Figure 3: Architecture for our implementation. The plan
recognition system has access to the Unity GME-driven
game. Components in the plan recognition loop are in gray.

2015]. The GME works with a range of planners, including
FAST DOWNWARD [Helmert, 2006] a classical planning
system based on heuristic search. Within the GME, game
actions are discretized, but not limited: the player can take
game actions, but only those that conform to the automated
planning knowledge representation that represents the do-
main will be interpreted by the GME as having occurred. We
used the Unity GME to create a game environment where the
player could accomplish one of many pre-established goals.

The Plan Recognition Architecture
Our implementation is illustrated in Figure 3. The plan
recognition component was implemented by taking the code
base that Ramı́rez and Geffner [2009]2 created and adapting
it to work with FAST DOWNWARD [Helmert, 2006]. As the
player plays in the environment, the plan recognition loop
(illustrated in Figure 3) triggers: For every action the player
takes that GME recognizes as part of the domain: the action
is logged by the OBSERVATION GATHERER, which sends
it to the OBSERVATION COMPILER developed by Ramı́rez
and Geffner [2009]. Then, the compiler produces a new
planning domain as outlined prior and passes it to the FAST
DOWNWARD planner, which produces the output plan that
is recognized by using A* with a context-enhanced additive
heuristic [Helmert and Geffner, 2008]. This system produces
one such plan, settling ties randomly.

The Planning Domain
Our planning domain was designed to reflect a fantasy-
genre adventure game in the style of The Legend of
Zelda [Nintendo R&D4, 1986]. The domain contains seven
action operators representing the types of actions that
collectively support completing key-lock quests [Ashmore
and Nitsche, 2007]. It contains 23 predicates that describe
relationships between objects in the domain, and 20 objects
the predicates could describe. This domain was encoded in
PDDL and input to the Unity GME, which created a virtual
environment similar to that illustrated in Figure 4. In this
example, the player can complete the game by getting one
item from each non-Center location.

2This code can be found at http://goo.gl/38vLZ2



Figure 4: An illustration of a procedurally generated game
instance generated by the GME from a plan recognition
theory. The player can beat the game by obtaining one
sword from the West location and one book from the East
location. There are four such winning conditions, which are
specified in disjunctive normal form to the plan recognizer
as discussed in the Plan Recognition Section.

Evaluation

Blaylock and Allen [2003] defined four metrics to evaluate
statistical goal recognizers, which we present in the context
of our own work:

1. Speed of computation – since gameplay happens in
real-time, the recognizer needs to be able to execute
fast enough to avoid affecting the player’s overall play
experience in a way that would interrupt the game.

2. Early/Partial prediction accuracy – the recognizer
should identify plans as economically/accurately as
possible.

3. Convergence – ideally, as more information is provided
to the recognizer, the more specific the recognized
plan should be. This criterion may not be tenable in
a realistic game context, since players always have the
option of abandoning their current plan in service of
another and are not required to communicate when or
what they switch to ahead of time.

4. Generalizability – the recognizer should use as little
domain-specific heuristics as possible in its calculation
of the recognized plan.

Our evaluation focused on speed of computation, although
we indirectly addressed the generalizability criterion since
we did not use domain-specific information in our system.
Future work will address the remaining criteria in an
experimental game context, for which a reasonably fast
speed of computation must be guaranteed to avoid adversely
affecting the player’s experience (hence our focus on the
first criterion in this work). However, speed is evaluated
in context. Prior work by Ramı́rez and Geffner [2009]
evaluated the performance of the plan recognizer across
several task domains. In this work, we were concerned with
plan recognition within an interactive narrative environment
that is managed by the Unity GME. We therefore configured
our domain to run performance tests in several scenarios.
We then characterized runtime trends of the plan recognition
loop in these scenarios to explore the feasibility of this
proof-of-concept for recognizing player actions.

Materials
We developed a game with the Unity (v5.1.0) game engine,
using the Unity GME and planning domain discussed in the
Implementation Section. The game ran on a Origin-brand
Personal Computer with a 3.50 GHz Intel Core i7 Processor
and an available 8.0 GB of RAM. The operating system was
the 64-bit version of Windows 7 Home Premium (SP1).

Procedure
The first author generated all of the data for this experiment
manually by playing all of the diverse game configurations,
never playing sub-optimally vis-à-vis plan cost/length. The
data was produced by executing the plan recognition loop
after every GME-recognized player step. The plan recog-
nizer ran as a separate thread within the Unity environment.
To evaluate the plan recognition system within the Unity
GME, we ran several configurations of the planning domain.
Overall we collected data on 36 different configurations
and each configuration was run 10 times. The different
configurations were along four dimensions:

1. Number of goals |G|. Because the recognizer must work
to find potential plans of players toward potential goals,
we varied the number of potential goals Gi ∈ G a
player could have. We arbitrarily chose two values
for the number of goals: 4 and 8. Each goal Gi was
constructed as a conjunction of two literals such that
the actions needed to accomplish both overlap in a way
that makes it difficult for the recognizer to identify one
unique plan as recognized. In effect, the number of
goals in the plan recognition theory dictates the amount
of planning problems the recognizer must consider
and the number of overlapping actions represents how
difficult it is for the recognizer to perform its task.

2. Length of the optimal plan length(π∗). This is one
estimator of the amount of processing time a domain-
independent planner consumes during the search pro-
cess. Since the plan recognition theory defines a set
of planning problems, the evaluation domain was
configured to support optimal plans of equal length
for all planning problems from the initial state of the
domain. These optimal plans used three of the seven
available operators in the domain. We selected two
values for the varying lengths: 9 and 15.

3. Number of actions in the domain |A|. This is an-
other estimator of the amount of processing time
a domain-independent planner consumes during the
search process. To inflate the number of actions in the
domain, we created differently-named copies of each
of the seven domain actions, leading us to three values
for the total number of actions: 7, 14, and 21. For
each set of actions, the compiled actions during plan
recognition proportionately increase, so the overall
branching factor impact is captured in this dimension.

4. Percentage of optimal plan actions observed (O%). As
gameplay continues, the observations that are compiled
and input to the domain compiler increases. We
observed runtime performance of the plan recognition
loop across three monotonically increasing percentages
of optimal plan actions observed: 30%, 50%, and 70%.



Table 1: Linear regression results for Equation 1. Of the
parameter estimates, only β4 is practically significant.

Parameter Estimate (in ms) SE (in ms) p-value

Intercept β0 =1178.9653 67.399632 < 0.0001
|G| β1 =-52.8709 5.9510353 1
length(π∗) β2 =73.4028 2.7986799 < 0.0001
|A| β3 =30.8058 2.0786601 < 0.0001
O% β4 =417.3162 41.319289 < 0.0001

Fstat = 270.7372 (p < 0.0001), R2
adjusted = 0.4065

Results and Analysis
We conducted an exploratory analysis to assess variations in
the response variable (runtime) as a function of the linear
combination of the predictor variables |G|, length(π∗), |A|
and O%. Because these parameters are continuous, our
model was a linear regression of the following form:
time = β0+|G|β1+length(π∗)β2+|A|β3+O%β4+ε (1)

The alternate hypothesis used in the linear regression was
HA > 0 (under the null H0 = 0) because we expected
increases in any of the predictor variables to lead to
an increase in the response variable. The results of the
regression are illustrated in Table 1. We fail to reject the
null hypothesis for |G|, the number of goals predictor, but
reject the null in all other cases. One likely reason for having
failed to reject the null hypothesis for |G| is due to significant
(p < 0.0001) interaction effects detected between |G| and
both length(π∗) (β = 10.6272) and |A| (β = −9.9678).
Thus, care should be taken in how to interpret results with
regards to |G|. Intuitively, as mentioned in the Procedure
Section, the number of goals input to the plan recognizer
dictates how many unique planning problems the solver
must consider in its identification of a recognized plan. We
therefore expect more nuanced experimentation to reflect the
intuition that a higher number of goals will result in a more
time-consuming computational process.

The other three predictors were statistically significant,
but only one of these (the O% predictor) was practically
significant in terms of magnitude increases to runtime: for
a unit increase in the number of observed actions over the
optimal plan in the domain, the runtime increases on average
by 0.417 seconds. This indicates that a promising area of
future work is the intelligent selection of observed actions
to input to the plan recognition loop. Finally, this work
suggests that this technique for plan recognition inside an
interactive narrative will scale well, since other predictors
were not detected as practically significant. Of course, future
work shall address this last point in a more exhaustive
manner since this work was more exploratory.

Limitations Unfortunately, no benchmark tasks exist for
plan recognition systems. Thus, our evaluation here was
done according to our intuition of what plan recognition
theories would be difficult for the plan recognizer to
perform its task. Namely, we designed the goals of the plan
recognition theory to require overlaps in the actions for the
optimal plan from the initial state. Our implementation of
plan recognition is planning-based, and automated planning

is a PSPACE-complete problem in general [Bylander, 1994].
Our system solves several planning problems in order to
come up with a solution to the plan recognition theory,
so even though our evaluation was not normative, it is
informative. An interesting avenue for future work is to
quantify the difficulty of a plan recognition theory, but that
is beyond the scope of this work. A second limitation is that
we assume the player will play optimally. This means that,
in the context of gameplay, it will be easy for the player
to “fool” the plan recognizer (e.g. through backtracking).
Future work shall address how we could potentially relax
this limitation by intelligently selecting the information
the recognizer pays attention to during gameplay (which
may have positive effects in the overall performance, as
suggested in the previous section). A third limitation is that
the architecture currently executes the plan recognition loop
after every player step, which is a naı̈ve strategy – players do
not necessarily change their mind with regards to what they
wish to accomplish in the environment after every step, thus
eliminating the need to recognize her plan after every action.
Thus, future work shall find principled ways to schedule the
plan recognition process to better reflect the player’s thought
process as she engages the interactive narrative.

Conclusion
We have discussed and evaluated a symbolic plan-
recognition system inside an interactive narrative virtual
environment. This system relies on automated planning data
structures and computation, which provide advantages for
representing player actions over statistical-based approaches
including a readable knowledge representation and clear
semantics for arbitrary domains. While future work is
needed for this approach to gain traction as a procedure
to model a player’s expectation of upcoming action, we
are optimistic about this line of work given the favorable
performance metrics that we have presented.

Several narrative scholars have highlighted the impor-
tance of understanding intention attribution when studying
how story consumers engage with narrative artifacts. We
have taken a step in service of this directive by modeling
intention attribution as a plan recognition process. Our
overall goal is to use plan recognition as a proxy for a
player’s interactive narrative comprehension processes. The
results presented here form the baseline reasoning that we
posit a player is engaging in within interactive narrative
contexts and future refinements will help more closely
approximate a player’s actual cognitive engagement. We
thus advocated for considering players as plan recognizers
and have proposed a computational representation and
procedure to describe their reasoning process.
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