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Abstract

We present a technique to further narrow the gap be-
tween recipe-based and domain theory-based plan recogni-
tion through decompositional planning, a planning model
that combines hierarchical reasoning as used in hierarchi-
cal task networks, and least-commitment refinement reason-
ing as used in partial-order causal link planning. We repre-
sent recipes through decompositional planning operators and
use them to compile observed agent actions into an incom-
plete decompositional plan that represents them; this plan can
then be input to a decompositional planner to identify the
recognized plan-space plan. Our model thus synthesizes the
heretofore disparate recipe-based and domain theory-based
plan recognition variants into a unified knowledge represen-
tation and reasoning model.

Introduction

Plan recognition is a form of activity recognition (Suk-
thankar et al. 2014) that attempts to predict the future be-
havior of an intelligent agent given a sequence of observa-
tions of that agent’s past behavior. Plan recognition assumes
a priori that there exist a set of possible goals that an agent
cares to achieve, and given a sequence of agent action obser-
vations, a plan recognizer attempts to identify: a) the goals
that explain an agent’s observed actions, and b) the actions
the agent will effect in pursuit of those goals.

Historically, plan recognition systems have relied on
plan libraries, which encode a collection of recipes (goal-
plan pairs) that record likely actions toward assumed goal
states (Carberry 2001). Recent work on plan recognition
has explored alternatives to the library-based model; e.g.
planning-based recognizers that rely on a domain the-
ory (Ramı́rez and Geffner 2009).

However, there are instances where recipes are still use-
ful constructs in the plan recognition task. For example,
if we were asked to recognize the plan of an agent en-
gaged in a cyber-attack, we would need to identify typical
and not necessarily optimal plans of the agent, who is pre-
sumed to want to avoid detection (Geib and Goldman 2001;
Buchanan 2016). Further, recipes can be used to capture ab-
stract or thematic notions of an agent’s activity that could
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explain more than just an agent’s plans for subsequent activ-
ity, such as their intent (Lesh, Rich, and Sidner 1999).

Ideally, we want to retain the flexibility, generality, and
scalability of the domain theory-based approach and the rep-
resentation of typical non-optimal action sequences afforded
by library-based approach. In this paper we outline a plan
recognition model, which enables just that.

Contributions We present the following technique to
combine domain theory-based and recipe-based plan recog-
nition: compile the observations of an agent into a par-
tial plan that a decompositional planner can address dur-
ing planning. Decompositional planning combines hier-
archical reasoning as discussed in hierarchical task net-
works (HTNs) (Erol, Hendler, and Nau 1994) and least-
commitment refinement reasoning as discussed in partial-
order causal link planning (Weld 1994) in a unified knowl-
edge representation, and a sound and complete reasoning
procedure (Young, Pollack, and Moore 1994).

For this technique to work, we introduce an algorithm
that can compile the observations into a sound but incom-
plete decompositional plan. This decompositional plan is
then used to seed a decompositional planning process. To
anticipate our later discussion, our technique proposes using
composite action schemata and associated decomposition
schemata (which decompose a composite action into more
primitive actions) to represent recipes; collectively, compos-
ite actions and associated primitive actions achieved through
decomposition enable formulating plan recognition recipes
in a general manner (Kautz and Allen 1986). These recipes
are used in a procedure that transforms observed agent ac-
tions into goals that a decompositional planner must ad-
dress during planning; i.e. into flaws that are refined (Kamb-
hampati, Knoblock, and Yang 1995) by the decompositional
planner.

Further, we present a commentary on our proposed com-
pilation procedure as well as a detailed walk-through of it
in a motivating context: plan-recognition in a cyber-security
domain.

Related Work

Recent research has cast plan recognition as a planning
process (Ramı́rez and Geffner 2009; Sohrabi, Riabov, and
Udrea 2016), wherein the agent is assumed to behave op-
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timally: the agent’s observed actions are compiled as addi-
tional goals (to the set of assumed goals) that a recognizer
must plan for at no extra cost using the planning domain the-
ory (planning domain paired with an initial state). The use
of a domain theory combined with state-of-the-art planning
algorithms make the plan recognition process more general,
flexible, and scalable.

The probabilistic approach proposed by Ramırez and
Geffner (2010) relaxes the assumption of agent optimality,
such that their domain theory-based recognizer admits non-
optimal action sequences, but it suffers from two limita-
tions:(1) it does not afford a way to record typical action
sequences in a particular domain as a way to guide the rec-
ognizer, and (2) it assumes that we have access to a prior
distribution over assumed goals, which (if inaccurate) may
negatively bias the recognizer (Golan and Lumsdaine 2016).

Existing library-based approaches (e.g., Avrahami-
Zilberbrand and Kaminka 2005, Amir and Gal 2011) and
probabilistic grammar-based approaches (e.g., Geib and
Goldman, 2011) fail to account for how individual actions
have more than one effect; an action contributes to more
than just the parent action or rule it belongs to. Assert-
ing an action with multiple effects (in the STRIPS-sense)
can enable an action sequence that does not fit neatly
into a library recipe, nor a grammar rule. Further, while
acyclic libraries and grammars can be compiled into a do-
main theory that represents them (Lekavỳ and Návrat 2007;
Ramirez and Geffner 2016), the compilation technique pro-
duces a domain theory PL for a library L that cannot be
effectively combined with a non-library domain theory PT

to perform plan recognition. This is because the logical lan-
guage (i.e. fluents) used in the domain theory PL can ex-
press relations between actions only in terms of the hierar-
chy in the library L. Since PT ’s fluents are different from
PL’s, they cannot be combined in one plan recognition sys-
tem because the approaches are using two different (logical)
languages.

To date, there exists no plan recognition system that can
combine a domain theory and a plan library in a principled
manner for the production of a recognized plan.

Combining Domain Theory and Recipes
In this section, we(1) introduce the decompositional plan-
ning model, (2) present an example illustrating the intuition
behind our technique, (3) discuss a compilation procedure
that enables using the technique, and (4) reflect on the tech-
nique’s overall strengths and weaknesses.

Decompositional Planning

The formal model of decompositional planning we adopt is
taken from DPOCL, a decompositional partial-order causal
link planning system previously developed by Young, Pol-
lack, and Moore (1994).

DPOCL is based on classical partial-order causal link
(POCL) planning (Weld 1994), which searches through a
graph in which nodes are partially specified plans and arcs
are plan-refinement operations that add constraints to a par-
tial plan (Kambhampati, Knoblock, and Yang 1995). Refine-
ments are carried out in a least-commitment style, wherein

the planner only adds a refinement that is strictly needed to
ensure plan soundness.

A partial plan is a partially-ordered sequence of ac-
tions (Sacerdoti 1975). We adopt a STRIPS-like represen-
tation for actions, where action step is identified by a unique
name, an action type (e.g. RUN, PICK-UP), a set of precondi-
tions, and a set of effects. Preconditions are literals that must
hold in the world prior to an action’s execution, and effects
are literals made true through the execution of the action.
For generality, literals in an action’s preconditions and ef-
fects may contain variable terms; each may be bound to a
constant term in the domain.

Our model enables capturing action hierarchies. In
DPOCL, actions can be primitive or composite.

Definition 1 (Action Schema). An action schema is a tem-
plate for an action which can occur in a planning domain.
It is a tuple λ = (T, P,E, ϑ), where T is an action type that
identifies the action schema (e.g., “move,” “pick-up”); P is
a set of preconditions, literals that must be true immediately
before the action can be executed; E is a set of effects, liter-
als made true by the execution of the action; and ϑ is a label
that identifies this schema as primitive or composite. P and
E can have variable terms to convey ideas such as “move
from ?x to ?y.”

An action schema is also known as an operator; we use both
interchangeably. An instantiated primitive action schema is
referred to as a primitive step and an instantiated composite
action schema is referred to as a composite step. Steps are
uniquely named instances of action schemata; each step is
assigned a unique label to distinguish that step from other
instances of the action schema.

A primitive step is directly executable in a DPOCL
planning domain (assuming its preconditions are satisfied),
whereas a composite step is not; a decomposition schema is
required to specify how the composite step is decomposed
into more primitive steps.

Definition 2 (Decomposition Schema). A decomposition
schema is a single-layer expansion of a composite step. It
is a tuple of the form δ = (T,S∗, B,≺, LC), where T is an
action type; S∗ is a set of pseudo-steps; B is a set of bind-
ing constraints over the variable terms of the steps in S∗; ≺
is a set of orderings over the steps in S∗; and LC is a set of
causal links over the steps in S∗.

In the same way that steps carry with them a label to dis-
tinguish them from other instances of a specific operator, so
too do the steps of a decomposition schema carry with them
a label to distinguish them from other instances of the same
operator in the schema; this is why they are referred to as
pseudo-steps in Definition 2. During plan generation, each
pseudo-step will either be associated with another step al-
ready in the plan (and given that step’s name), or will be
instantiated as a new step and given a unique name.

Each decomposition specifies a sub-plan whose ultimate
effect achieves the composite step being decomposed. De-
spite being partial, they can not be made up of arbitrary
steps; each decomposition schema(1) contains a dummy ini-
tial step s0 whose effects are the preconditions of the parent
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step; (2) contains a dummy final step s∞ whose precondi-
tions are the effects of the parent step; (3) has ordering con-
straints ensuring that s0 precedes all other steps in the sub-
plan, and that s∞ follows all other steps in the sub-plan; and
(4) each effect of s0 has a path of causal links that terminates
in precondition of s∞.

During plan construction, a DPOCL planner adds steps to
the partial plan in order to guarantee two things.

First, for each step in the partial plan, all of the step’s
preconditions are true before it is executed, and not undone
between the moment at which the preconditions are true and
when they are needed. A precondition can be true in the ini-
tial state or made true by the effect of an earlier step. Causal
links explicitly record these precondition satisfaction rela-
tionships. A causal link connects two plan steps s1 and s2
via a literal p, denoted s1

p−→s2, when s1 establishes a condi-
tion p in the world needed by s2 to execute.

Second, if a composite step has been added to the partial
plan, it must be fully decomposed to the level of primitive
steps. Decomposition links explicitly record the choice of
decomposition used to refine a composite step. A decompo-
sition link connects three plan steps sc, sd0, and sd∞, denoted
sd0 � sc � sd∞, where sc is a composite step whose decom-
position is the partial sub-plan bounded by step sd0, which
encodes sc’s preconditions as its effects, and step sd∞, which
encodes sc’s effects as its preconditions.

A plan is sound if its variable bindings and ordering
constraints are consistent. It is complete if it contains no
flaws (Kambhampati, Knoblock, and Yang 1995). A flaw in
DPOCL planning is one of three things: an open precondi-
tion, a threatened causal link, or an unexpanded composite
step. An open precondition flaw is the case when there ex-
ists a step in the partial plan with a precondition that has not
been established via a causal link. A threatened causal link
flaw is the case when there exists a step in the partial plan
that can possibly be ordered such that it undoes a condition
established via a causal link. An unexpanded composite step
flaw is the case when there exists a composite step in the plan
with no decomposition link that specifies its sub-plan. The
original DPOCL Planning Algorithm is not presented due
to space considerations, but is provably sound and primitive
complete1 (Young, Pollack, and Moore 1994).

Our Technique

Our technique combines domain theory (i.e. a planning do-
main) and recipes in the production of a recognized plan.
Recipes are encoded using decompositional planning data
structures, which are added to the planning domain defini-
tion. We assume to be working with a keyhole plan recog-
nizer, which does not account for any information beyond
the observed agent’s actions. As mentioned, recipe-based
plan recognition operates over a plan library, a set of recipes
that record likely actions toward assumed goal states. Be-
cause recipes in our formulation are in the context of plan-
space planning, recipe goals are framed as the effects of

1For every solution π to a planning problem where π only con-
tains primitive steps that are causal ancestors of the goal state,
DPOCL will produce a plan whose primitive steps are π.

Observation
Compilation

Planning

Associate with 
new recipe  
Associate with 
existing recipe 
Convert to open 
goal

Decompositional 
Planning with 
non-empty initial 
plan

chooseObserved
Actions

Observation
Goals

Recognized
Plan

Figure 1: Illustration of the proposed technique for combin-
ing domain theory and recipes in plan recognition. Arrows
represent information and boxes represent algorithmic mod-
ules. Observed actions are transformed into an incomplete
DPOCL plan that is completed by a planner to produce a
recognized plan.

composite action schema, as in Definition 1. A recipe is thus
a pairing of a composite action schema and a decomposition
schema. Formally:
Definition 3 (Recipe). A recipe is a tuple R = (λ, δ), where
λ = (T, P,E, ϑ) is a composite action schema as in Def-
inition 1; and δ = (T,S∗, B,≺, LC) is a decomposition
schema as in Definition 2, such that the action type T of
both λ and δ is equivalent.

Recipes in DPOCL are encoded implicitly via a plan-
ning domain; every combination of compatible (i.e. of the
same action type) composite action schema-decomposition
schema pairs in the domain is a recipe. Given a planning do-
main that includes recipes, and a sequence of observed agent
actions, our technique proceeds in two pipelined phases as
illustrated in Figure 1:

Phase 1: Compiling the observed agent’s actions into an in-
complete DPOCL plan that represents those ac-
tions.

Phase 2: Using a DPOCL planner to refine the plan pro-
duced in Phase 1 until no flaws remain.

In this paper, we present an algorithm that accomplishes
Phase 1, enabling our overall technique of combining do-
main theory and recipes. As discussed, Phase 2 is accom-
plished by a DPOCL planner; we use the Longbow planning
system (Young 1994).

Example To illustrate the intuition behind our approach,
we apply our technique to our motivating context: plan
recognition in a cyber-security domain. In particular, we as-
sume to be attempting to recognize the plan of an agent
engaged in a cyber-attack, as illustrated in Figure 2. The
phases in a cyber-attack are considered to be composite in
the sense that there are multiple candidate ways they can be
achieved (Buchanan 2016).

In this example, we process the observation sequence
in Figure 3 one action at a time. When we dequeue the
first observed action “open net ports” from the sequence,
our technique attempts to recognize the action as part of
a recipe in the library. This association process looks for
every recipe in the library whose decomposition contains
a pseudo-step of the same action type as the observation.
Assume that our technique finds one such recipe, namely
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Initial
Compromise

Establish
Foothold

Complete
Mission

Initial
Recon

Escalate
Privileges

Internal
Recon

Move
Laterally

Maintain
Presence

Figure 2: One interpretation of the Cyber-Attack life-cycle.
Each stage represents a composite action schema with multi-
ple possible more primitive realizations (i.e. decomposition
schemata). The fourth stage (from left to right) presents a
loop of abstract actions, which may continue for an undeter-
mined period of time.

install
backdoor

open net 
ports

Observation Sequence

Time

trigger cross-
side script

Figure 3: An example sequence of agent observations in a
cyber-security domain. The black boxes represent primitive
actions of the named type (i.e. types are “open net ports,”
“install backdoor,” and “trigger cross-side script” respec-
tively), and are processed in order from left to right. Dotted
circles represent preconditions, and filled-in circles repre-
sent effects.

R = (“establish foothold”, “foothold-through-malware”),
whose decomposition “foothold-through-malware” contains
a pseudo-step of type “open net ports.” Once found,
this recipe is added to our empty plan-space plan with
the respective pseudo-step replaced for the observed ac-
tion, as illustrated in Figure 4a. The empty partial plan
is updated by: (1) adding the composite action “es-
tablish foothold,” (2) adding the decomposition schema
“foothold-through-malware” (with corresponding pseudo-
steps, bindings, orderings, and causal links), (3) replac-
ing the pseudo-step “open net ports” with the observation
of the same type, and (4) adding a decomposition link
sd0 � “establish foothold”

�

sd∞ where sd0 and sd∞ are
“start malware sub-plan” and “end malware sub-plan,” re-
spectively. The remaining pseudo-steps “install backdoor,”
“enter,” and “download malware” remain as pseudo-steps
that are available for integration of future observations.

When we dequeue the second observed action “install
backdoor” from the sequence, our technique (instead of as-
sociating it with a new recipe as before) matches it with the
recipe constructed previously by simply replacing the cor-
responding pseudo-step in the action, as illustrated in Fig-
ure 4b. Further, because “install backdoor” was observed
after “open net ports,” an ordering is added to the plan to
reflect as such.

When we dequeue the third observed action “trigger

cross-side script” from the sequence, our technique cannot
associate it with an existing recipe, as illustrated in Fig-
ure 4c. Assume that our technique cannot find an applicable
recipe for this action; in this case, we simply add it to the
partial plan and introduce an ordering to the partial plan to
reflect it coming after the action “install backdoor.”

At this point, we have run out of observations and have
constructed a consistent but incomplete DPOCL plan. This
plan is then used to initialize a search by a DPOCL planner,
which should ensure it becomes sound and complete.

Compiling Observations We present an observation com-
pilation procedure for the first phase of the technique illus-
trated in Figure 1. The second phase uses a DPOCL planner,
originally defined by Young, Pollack, and Moore (1994).
The compilation builds upon Ramı́rez and Geffner’s intu-
ition of observations as goals, and leverages the framing of
goals as islands (Hayes-Roth and Hayes-Roth 1979): intu-
itively, we compile observations of actions into a DPOCL
plan with which to seed a plan-space planning process. This
compiled plan represents an intermediate state of the search
(plan-)space through which all solutions to the planning
problem must pass. Thus, starting a DPOCL planner with a
non-initial plan controls the form of the solutions the planner
generates, since it effectively prunes a portion of the search
space that would be accessible from the (more general) ini-
tial plan. Conceptually, the pruned portions represent plans
that would be incompatible with the observations that the
plan recognizer takes as ground truth of activity in a domain.

The compilation procedure we propose is described in the
algorithm listing. The algorithm begins by initializing the
input plan if it is empty (Step 0), which will typically only
occur on the initial call to the algorithm. The recursive ter-
mination criteria is then checked (Step 1): if the plan so far
is inconsistent (i.e. if the orderings lead to a cycle or the
bindings afford a mapping between opposite literals), the al-
gorithm fails; otherwise, if there are no further observations
to compile, it returns the DPOCL plan. However, if there
are further observations to check (Step 2), then it dequeues
the next observation in the input sequence, and does one of
three things: (A) instantiates a new recipe with a pseudo-
step that could be swapped for the observation (and swaps
the pseudo-step), (B) finds an instantiated recipe that con-
tains a pseudo-step that could be swapped for the observa-
tion (and swaps the pseudo-step), or (C) simply adds the
observation to the plan. In all cases, the algorithm ensures
that if there are already other observations in the plan that
temporally preceded (i.e. appeared before) the observation
under consideration within the input sequence, then order-
ing constraints are added to the plan to reflect as such (Step
3). The procedure then makes a recursive call to handle the
rest of the observations (Step 4). This algorithm produces a
consistent, but not complete DPOCL plan, as evidenced by
the fact that Step 1 does not admit inconsistent plans, and
returns failure if such a plan is detected.

Given a sequence of observations and a domain theory, a
DPOCL plan recognizer is a system that: (1) compiles ob-
servations into a DPOCL plan that represents them as in Al-
gorithm , and (2) uses the compiled DPOCL plan as input to

799



foothold-through-malware

establish
foothold

download
malware

open net 
ports

start malware
sub-plan

enterinstall
backdoor

end malware
sub-plan

After processing open net ports: 
(Example of Recipe Recognition)

(a) Illustration of DPOCL-OBSERVATION-COMPILATION Step 2.A.

foothold-through-malware

establish
foothold

download
malware

open net 
ports

start malware
sub-plan

enterinstall
backdoor Ordering added:

open net ports ⧼ install backdoor

end malware
sub-plan

After processing install backdoor:
(Example of Recipe Matching)

(b) Illustration of DPOCL-OBSERVATION-COMPILATION Step 2.B.

foothold-through-malware

establish
foothold

download
malware

open net 
ports

start malware
sub-plan

enterinstall
backdoor Ordering added:

install backdoor ⧼ trigger cross-side script

end malware
sub-plan

After processing trigger cross-side script:
(Example of Plan-Space Conversion) trigger cross-

side script

(c) Illustration of DPOCL-OBSERVATION-COMPILATION Step 2.C.

Figure 4: Evolution of a partial decompositional plan during observation compilation. The above sub-figures illustrate what
happens after dequeueing the first (a), second (b), and third (c) observation illustrated in Figure 3. In each figure, the gray box
“establish foothold” represents a composite step, black boxes represent primitive steps, and white boxes represent pseudo-steps
of the decomposition schema “foothold-through-malware” (itself denoted as a partially-dotted bounding box). The recipe being
applied in this observation compilation process is R = (“establish foothold”, “foothold-through-malware”) and is represented
implicitly. The dotted arrows that go from the composite action to the dummy actions “start malware sub-plan” and “end
malware sub-plan” represent the decomposition link that records how “establish foothold” is realized via the (decomposition)
sub-plan “foothold-through-malware.” The black arrows that go from effects of actions (black circles) to preconditions of other
actions (dotted circles) represent causal links.
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Algorithm A DPOCL Observation Compilation Algorithm,
which compiles a sequence of observed agent actions into
a consistent, but not complete DPOCL plan that represents
them. During generation, the algorithm can apply recipes
that must be resolved during DPOCL plan recognition plan-
ning.
Input:

• A planning problem P = (D, i, g), where D is a domain model
that specifies the available logical fluents L, composite action
schemata Λ, and decomposition schemata Δ; i is a set of fluents
that define the initial state; and g is a set of fluents that define
the goal state the agent is assumed to pursue.

• π = (S, B,≺, LC , LD), a DPOCL plan.

• O = [o0, . . . , on], a sequence of observations such that
∀oi ∈ O, oi’s action schema exists in Λ ∈ D.

Output: π = (S, B,≺, LC , LD), a DPOCL plan that represents
the observed actions.

procedure DPOCL-OBSERVATION-COMPILATION(P, π, O)
0. Initialization If π is empty, initialize it as: S = {s0, s∞},
≺= {s0 ≺ s∞}, B = LC = LD = {∅}, where s0’s effects
are the fluents in i, and s∞’s preconditions are the fluents in g.
1. Termination: If B or ≺ is inconsistent, fail. Else, if O is
empty, return π.
2. Observation Compilation: Let oi ⇐ O.dequeue().
Nondeterministically choose one of the following:
A. Recipe Recognition

A.1 Recipe Selection: Nondeterministically choose a
recipe R = (λ, δ), such that δ contains at least one
pseudo-step t ∈ S∗ of the same action type as oi (if
no such recipe exists, backtrack). Replace t/oi in δ.

A.2 Implied Step Addition: Let π′ be a DPOCL plan
(S ′, B′,≺′, L′

C , L
′
D), where:

• S ′ ⇐ S ∪ S∗
δ ∪ {λ} � Including pseudo-steps.

• B′ ⇐ B ∪Bδ

• ≺′⇐≺ ∪ ≺δ

• L′
C ⇐ LC ∪ LCδ

• L′
D ⇐ LD ∪ {(λ, tδ0, tδ∞

)}
B. Recipe Matching

B.1 Recipe Assignment: Let π′ be a DPOCL plan
(S ′, B′,≺′, L′

C , L
′
D) such that π′ = π. Nondetermin-

istically choose a pseudo-step t ∈ S′ of the same action
type as oi (if no such step exists, backtrack). Replace
t/oi in S ′, and let B′ ⇐ B′ ∪ {oi’s bindings}.

C. Plan-Space Conversion

C.1 Observation Transformation Let π′ be a plan
(S ′, B′,≺′, L′

C , L
′
D), where:

• S ′ ⇐ S ∪ {oi}
• B′ ⇐ B ∪ {oi’s bindings}
• ≺′⇐≺ ∪ {(t0 ≺ oi), (oi ≺ t∞)}

� Order it between the initial and final steps.
• L′

C ⇐ LC , L′
D ⇐ LD

3. Relative Observation Ordering:
If there exists an observation oi−1 ∈ S ′ that is sequentially prior
to oi in O, then let ≺′⇐≺′ ∪ {(oi−1 ≺ oi)}.
4. Recursive Invocation:
Call DPOCL-OBSERVATION-COMPILATION(P, π′, O).

end procedure

a DPOCL planner (Young, Pollack, and Moore 1994), which
further refines the input plan to make the plan complete. The
compilation process in our technique will produce a consis-
tent DPOCL plan with flaws that will be refined (Kambham-
pati, Knoblock, and Yang 1995) by the DPOCL planning
process to produce a recognized plan. If a flaw can never
be refined at the planning stage, the plan recognition system
will produce no recognized plan.

Comments on our Compilation Algorithm The compi-
lation algorithm was intentionally designed to be very gen-
eral, because different applications could require different
control strategies for deciding how to perform the various
open decisions.

Firstly, the decision of Step 2 (Observation Compilation)
is left open; that is, observation compilation can delegate
to any of three sub-procedure branches as discussed earlier.
Each branch adds an observation to the plan in a different
way; namely, by applying a new recipe, by using an existing
recipe, or by not using a recipe at all. Regardless of which
is desirable for the application context, our algorithm can
accommodate using all three in an interleaved fashion.

Secondly, the decision of Step A.1 (Recipe Selection) is
left open; that is, recipe selection can place the observation
in any recipe that is applicable (i.e. which contains a decom-
position schema with a pseudo-step of the observation’s ac-
tion type). An example of using a particular control scheme
is the work by Lesh, Rich, and Sidner (1999), which uses
the concept of a user’s focus during human-computer inter-
action to limit the range of recipes available to predict the
user’s intended plan.

Thirdly, the decision of Step B.1 (Recipe Assignment) is
left open; that is, recipe assignment can replace any pseudo-
step of the same action type as the observation. This would
be useful to explore various alternatives that could explain
the observed action, since different pseudo-steps of the same
type might serve different purposes in the schema.

Because the compilation does not produce a complete
plan, the DPOCL plan recognition process is dominated by
the performance of the DPOCL planning algorithm. It is
possible that decisions taken at the observation compilation
phase make it more difficult for the plan recognition process
at the planning phase. If the flaws that are introduced by the
recipes are impossible to refine, the plan recognition pro-
cess would have to backtrack beyond the planning phase to
the compilation phase, which makes the process potentially
computationally complex. In future work, we hope to iden-
tify informed control strategies for Steps 2, A.1, and B.1 that
minimize the amount of overall work needed to find a plan
to explain an agent’s observed actions. Observation compi-
lation is executed once for every goal the agent is assumed
to have. Thus, the identification of informed control strate-
gies is a fruitful area of future work for this model of plan
recognition.

Discussion

This paper presents a technique for combining recipe-based
and domain theory-based reasoning during plan recognition.
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Importantly, the work we propose here is a general case
of plan recognition as plan-space planning, which itself has
not previously been discussed. If we disallow composite ac-
tion schemata and introduce no decomposition schemata,
then our compilation algorithm would have no recipes to
apply, thereby fixing the choice of Step 2 to the C branch.
Transitively, the DPOCL planner would fall back to POCL
planning as discussed by Young, Pollack, and Moore (1994).
Thus, our formulation here also paves the way for re-
searchers interested in plan recognition via plan-space plan-
ning who operate in non-hierarchical domains.

We do not assume that the agent is necessarily optimal,
a condition that is typically operationalized in terms of the
minimum cost of the recognized plan. However, what that
means for our model is that the DPOCL planner could po-
tentially fix flaws introduced during compilation, but not
reuse compiled information in the computation of the solu-
tion plan. Plainly, the steps added to the plan during obser-
vation compilation would appear in the solution plan only
because they were observed to have occurred, not because
they are on the agent’s plan to solve an assumed goal (unlike
models which assume optimality). To account for this, we
assume that the agent acts with intent, a condition that must
be enforced by the DPOCL planner. That is, the effects of
steps added to the compiled plan must be intended, as de-
fined by Young and Moore (1994): informally, an effect is
intended if it is used in a causal link, and the step that asserts
that effect is a causal ancestor of the final step of the plan. To
assume that the agent must always act with intent constrains
the kind of activity our model can effectively recognize; the
actions of exploratory agents, for example, will likely not be
well-recognized in our model (for which additional modifi-
cations would be needed).

Another difference relative to prior work of our plan
recognition model is the form of the recognized plan that is
output. Due to the plan-space oriented nature of the DPOCL
planning process, the output of the DPOCL plan recogni-
tion pipeline is a partial plan, which represents a family of
plans that satisfy the constraints identified during the refine-
ment process (Kambhampati, Knoblock, and Yang 1995).
This is unlike most prior work on plan recognition, which
only produces a single recognized plan as output. A notable
exception is the work by Geib and Goldman (2011), which
admits the possibility of an agent pursuing multiple plans;
their work is unlike ours because we produce an artifact that
is a family of totally ordered and ground plans (all those
compatible with the partial plan), whereas their formalism
computes a probabilistic distribution of potentially pursued
totally ordered plans.

In our example, we constrained the observation compila-
tion to work over primitive steps exclusively. However, there
is nothing in our formalism that would prevent the compi-
lation from working with recognized composite steps. If the
planning domain contains decomposition schemata that con-
tain composite steps as part of the sub-plan, then the same
reasoning procedure can introduce a higher level of hierar-
chy into the recognized plan. One limitation, however, is that
these added levels of hierarchy must be triggered by the ob-
servation of a composite step. That is, once a recipe’s de-

composition schema has been added to the partial plan by
our algorithm, the procedure does not further check to see if
that recipe’s composite action schema can itself form a part
of another decomposition in the partial plan. An artificial so-
lution to this limitation is to enqueue the recipe’s composite
action schema into the queue of observations, but we have
not explored the potential ramifications of doing so.

The immediate next step is to empirically evaluate our
plan recognition system. While this plan recognition model
can be built atop the Longbow decompositional planning
system (Young 1994), we are interested in extending the top
POCL performer of the 3rd International Planning Compe-
tition (Long and Fox 2003), VHPOP (Younes and Simmons
2003) to handle decompositional reasoning. VHPOP’s built
in support for heuristic guidance of plan-space search sug-
gests that it would be amenable to incorporating recently-
developed hierarchy-related heuristics (e.g., Bercher, Keen,
and Biundo, 2014) that allow us to further speed up to-
tal recognition time. Empirical evaluation, however, remains
challenging due to lack of agreed upon domains and metrics
for plan recognition (Goldman et al. 2011).

Conclusion

The work we present proposes (to our knowledge) the first
synthesis of recipe-based and planning-based plan recogni-
tion in a unified knowledge representation, and sound and
(primitive) complete decompositional planning reasoning
procedure. Our synthesis is straightforward and it enables
narrowing the gap between the existing and well-established
community of recipe-based plan recognition researchers,
and the more nascent but rapidly growing community of
planning-based plan recognition researchers.
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