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Abstract

This paper presents the foundations of a computational
science of game design—a model of abstraction: the outcome
of a situated design process that conceptualizes something in
terms of something else for a specific purpose. The outcome
of abstraction is modeled via an abstraction scheme, a step
toward modeling the process of game design abstraction
from a human-centered perspective. A scheme’s purpose is
couched relative to a scheme’s properties, also defined herein;
collectively, the properties represent the space of tradeoffs
designers must navigate for engineering virtual worlds. This
model’s analytical traction is evidenced by applying it to the
design of pathfinding, a core behavior in artificial intelligence
for games. More broadly, it is a foundation for shared
progress because it affords directly comparing particular
abstractions of concepts and phenomena across the gamut of
research on intelligent systems in entertainment.

Introduction
Game design problems remain wicked (Conklin 2005). They
are not fully understood until solved (Washburn Jr et al.
2016), have no a priori stopping criteria (Kultima and Alha
2010), and are unique one-shot operations (Murphy-Hill,
Zimmermann, and Nagappan 2014). Further, their solutions
are neither easily identifiable, nor strictly right-or-wrong but
rather better-or-worse (Davis, Steury, and Pagulayan 2005).

Because virtual worlds are computer-mediated, artificial
intelligence (AI) systems already assist building and/or
independently build these environments (Liapis et al. 2019).
AI-powered tools that simulate vast state-trajectories of
gameplay (e.g. Robertson, Jhala, and Young 2019, Cook
and Raad 2019) or construct games wholecloth (e.g. Sum-
merville et al. 2017, Liapis et al. 2018) promise to help
manage the unclear tradeoffs that underlie game design,
presently dealt with by “tens, if not hundreds, of person-
years of a coordinated effort among artists, programmers,
designers, and authors” (Roberts 2011).

Work in this area has thus far focused on understanding
aspects of game artifacts that enable their procedural
generation. Relatively, much less attention has been paid
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to understanding the design process that gives rise to the
artifact. Game design is a situated practice (Kuittinen and
Holopainen 2009): designers, artifacts, and their environ-
ments are so intertwined, that they mutually inform and
constrain each other. Failing to look at design theory and
practice is thus a critical gap in our body of knowledge.
The design sciences afford framing questions around AI-
powered design from a more human-centered perspec-
tive (Cross 2001a). This is in contrast to other excellent
efforts around AI-powered design, which seek to have the
AI recognized as a creative entity (Cook 2017) or to design
games through non-human ways (Zook and Riedl 2014).
I begin addressing this gap via a model of game design
abstraction, posited as a foundational part of game design.

The model is part of a science of game design, an
application of the design sciences to the study of games.
This paper sets forth a basis for the computational simulation
of game design abstraction that affords comparing between
different abstractions of a common phenomenon; I model
the outcome of abstraction as a step toward modeling it
as a process. I evidence the model’s utility by analyzing
a world abstraction for pathfinding. Finally, I notionally
argue for our model’s relevance as a foundation for shared
progress. Succinctly, different strands of game AI research
are particular abstractions over game design concepts and
phenomena, which – through our framework – might now
be directly comparable in a meaningful way.

Related Work
I propose to use computational science—an inter-discipline
concerned with the design, computer-implementation, and
use of mathematical models to analyze problems writ
large (Rüde et al. 2018). A computational science of game
design is a form of (conceptual) theory-building about
game design via the analysis of mathematical models about
design phenomena that are implemented on computers. Of
the many ways to achieve computational game design, I
pursue one rooted in AI. For me, “the value of asking the
question ‘Can a machine design?’ is that it begs the corollary
question, ‘How do people design?”’ (Cross 2001a p.50).
Given my mode of inquiry, there are 3 “levels” of related
work: conceptual, computational, and mathematical.



Conceptual
Abstraction is an elusive concept to define and compu-
tationally model. It is both (1) a conceptual process of
analyzing and describing something in terms of something
else believed to represent it at a “more fundamental” level,
and (2) the outcome of said process.

Despite its elusivity, it is thought of as a key process
and outcome of design (Lee, Pries-Heje, and Baskerville
2011). In game design, abstraction is primarily ontological:
what is abstracted is the nature of a concrete “real” world,
represented by some abstract “virtual” world that serves
as the game’s context (Fernández-Vara 2011). There are at
least 2 types of game design-centric ontology abstractions:
state-based and action-based. Abstractions of state target
narrative-theoretic features (e.g. Damiano, Lombardo, and
Pizzo 2019): examples include space, time, and entities
(characters and objects). Abstractions of action target ludic-
theoretic features: examples include mechanics, goals, and
randomness (e.g. Debus 2019). These two abstraction types
are intertwined (Cardona-Rivera, Zagal, and Debus 2020)
and foundationally affect gameplay (Juul 2007): players
negotiate varying levels of abstraction that help them act
toward goals in virtual worlds. I aim to be computationally-
precise about what abstraction means (as a product first and
then as a process) in game design, which to my knowledge
has not been explored by current research. Our model is
agnostic to the type of abstraction, but our key example is an
abstraction of space as relevant to the mechanic of directed
movement. I expect my model to bear relevance to studying
the effect of particular abstractions on gameplay.

Abstraction is so ready-to-hand (Heidegger 1962) that we
use it as a matter of course in research on AI and interactive
digital entertainment (AIIDE). Evidence of abstraction is
recoverable through our use of metaphor in language, and
appears across a great deal of AIIDE-relevant work; e.g.,
Narratives as Plans (Young et al. 2013), Games as Con-
versation (Cardona-Rivera and Young 2014), Experience
Management as Factored Markov Decision Processes (Thue
and Bulitko 2018), Content Generation as Quality-Diversity
Search (Gravina et al. 2019), and Game Interfaces as
Programming Languages (Martens and Hammer 2017).

Each metaphor gives a particular understanding of
what is abstracted: it highlights features that facilitate
computational modeling or generation while hiding features
not thought of as interesting, relevant, or meaningful (Lakoff
and Johnson 1980). The mentioned (and countless other)
bodies of work represent one abstraction and do not reflect
on the process that gave rise to the abstraction in the first
place. This risks conflating automated task accomplishment
with the simulation of human processes used for task
accomplishment (Newell, Shaw, and Simon 1960;
Searle 1980). The latter is what I seek to model.

Computational
Recent work on abstraction includes that by (1) Osborn,
Lambrigger, and Mateas (2017) on HyPED, which switches
between levels of spatial abstraction of platformer/action-
adventure games to lower the dimensionality of the search

space for planning, (2) Sturtevant et al. (2019) on a
mechanism to abstract a virtual space as a directed graph
for pathfinding that accounts for dynamic terrain with
concordantly dynamic terrain costs, and (3) Diamanti and
Thue (2019) on a mechanism that abstracts more-detailed
and resource-heavy world states to logically-consistent but
less-detailed and cheaper-to-maintain world states (and vice-
versa), relative to the player’s perception of the world.

In contrast, I aim to show how abstraction is relevant
not just for planning, pathfinding, or world-simulation
by introducing a computationally-realizable mathematical
framework that is agnostic to an underlying representation
of state or action. Pathfinding is an (obvious) application
of our work, and level-of-detail/spatial abstraction is a
particular form of abstraction can model via our work.

Mathematical
To model game design abstraction, I use the theory of
abstract intepretation (Cousot and Cousot 1992); this
theory has already been mechanized within the field of
programming languages, paving the way to a computational
implementation of these ideas. Abstract interpretation ap-
plies category theory (e.g. Kan 1958) to the field of program-
ming languages, and is concerned with approximating the
semantics of computer programs. A sound approximation
of a target program must preserve the target’s concrete
semantics. The reason for developing said approximation is
to know something about the target that is too expensive to
compute (or even undecidable) via said program.

For example, imagine you want to verify the sign of a
sequence of multiplication operations; whether the result of
the sequence is positive, negative, or zero. If the sequence
is very long, unrolling the full multiplication might be too
expensive in terms of memory or speed. If, instead of using
the values, you only looked at the signs – i.e. swap every
value for +1, −1, or 0 as appropriate – you can determine
the resulting sign without incurring a great memory cost.

Ultimately, “looking only at the signs” is an abstraction
of the concrete and more quantitative semantics of the
program (the sequence of multiplications of actual values)
to an abstract more qualitative (sound, approximate) seman-
tics of the program, which is more efficient to compute
over (Kuipers 1994). I extend this idea to model game design
abstraction outcomes.

Theoretical Backdrop: Game Design Science
Using AI-rooted computational science is a commitment
on how we should study game design abstraction. This
commitment is situated alongside 2 other implicit ones: what
we study and why we pursue it.

Aim: Prediction via Research-into-(game)design
This work is part of a game design science discipline, in
which game design is the object of study. I target prediction
as the research end-goal: I seek causal structure that helps
anticipate the effects of designed games on the people that
will play them.



This work is research-into-design (Frayling 1994), which
centers on creating Standard Models to capture community
consensus over design activity; cf. the Standard Model of the
Mind (Laird, Lebiere, and Rosenbloom 2017).

Research-into-design stands in contrast to other potential
goals. While worthwhile, it is neither research-by-design –
research via the act of designing; i.e. knowledge synthesis
through “designernly ways” (Cross 2001b) – nor research-
for-design, which aims to articulate knowledge directly
relevant to (game design) practice (cf. O’Donnell 2014).

Concepts and Phenomena: FBS and Situatedness
I adopt the situated Function–Behavior–Structure (sFBS)
model of the design process (Gero and Kannengiesser 2004).
The sFBS model is a knowledge representation (KR, Davis,
Shrobe, and Szolovits 1993) of design activity: it defines
design as a situated (Dewey 1896) process an agent
undertakes by reasoning about the function, behavior and
structure of an artifact during its construction.

sFBS combines two KRs: FBS (Figure 1) is artifact-
centric, and situatedness (Figure 2) is person-centric.

FBS This KR extensionally identifies what the designer
processes and how (Gero 1990). It distinguishes 3 kinds
of information, termed “variables.” Each variable models a
different bit of information about a designed artifact: (1) the
Function variables describe what the artifact is for, (2) the
Behavior variables describe what the artifact does; both
what is expected (Be) and what follows from form (Bs),
and (3) the Structure variables describe what the artifact
is; the constituent components and relationships that define
its form, used to Describe its construction or manufacture.
Variables are manipulated by 8 design “sub-processes:”
(1) Formulation transforms design requirements expressed

in F into Behavior expected to enable said function.
(2) Synthesis transforms expected Behavior into a Structure

intended to exhibit it.
(3) Analysis derives behavior (Bs) that follows from S.
(4) Evaluation compares actual Bs to desired Be, to check

if S is acceptable.
(5) Documentation produces a Description to construct or

manufacture the artifact.
The last 3 processes change variables or values for them in
response to S being deemed unacceptable by sub-process 4:
(6) Exploration (Reformulation 1, sFBS) changes S. So-

named because Be’s conceptual space does not change,
reflecting exploratory creativity (Boden 2003).

(7) Transformation (Reformulation 2, sFBS) changes Be.
So-named because the conceptual space changes, re-
flecting transformational creativity (Boden 2003).

(8) Re-framing (Reformulation 3, sFBS) changes F. So-
named because it re-conceptualizes the goals, as in
Framing from reflection-in-action (Schon 1984).

Situatedness This KR models the worlds the agent is
situated in; these are so intertwined that the agent’s activity
is in part determined by said worlds. It distinguishes 3 kinds
of worlds that qualify design knowledge and reasoning.

The external world Xe contains the designer, composed
of information external to them. The interpreted world Xi

Figure 1: Illustration of FBS, a model of design activity as
a system of 5 variables (nodes) and 8 processes (edges).
Singly-directed edges represent processing of source vari-
ables into sink variables; doubly-directed ones represent
comparing linked variables.

Figure 2: Illustration of situatedness: 3 worlds that qualify
FBS’s 5 variables (Figure 1). Designers interpret the
external world Xe to mentally enact a model of it Xi, which
is subject to (re-)interpretation. The interpreted world is
abstracted for theorizing solutions the designer wishes to
effect in the expected world Xi

e. Solutions are concretized
for deliberation in Xi or enacted in Xe. Arrows indicate
flow of information, always connecting two worlds.

is mentally built by the designer via sensation, perception,
and acquired knowledge; designers mentally manipulate
information within this world. The expected world Xi

e is
imagined by the designer as the result of their design. Each
world modally qualifies each of FBS’s variables; i.e. the
situated FBS model contains Fe, Fi, Fi

e, Bee, Bei, etc.
The worlds are recursively linked via 3 processes that

manipulate information from one world’s form into another.
Interpretation goes from the external world to the inter-
preted world, or from the interpreted world to itself: it is
a fusion of sensation, perception, and thought to produce an
internal representation of information. Abstraction focuses
on some aspect of the interpreted world to set goals
for design activity within the expected world; this design
activity can be concretized to simulate expected effects
within the interpreted world, or enacted in the external
world. Our work targets understanding the situated design
process of abstraction: how game designers focus on certain
aspects of their intepretation of some external world to form
an expected world, in which they imagine activity that is
then effected in the all-encompassing external world.



Modeling Design Abstraction via Schemes
Abstraction involves manipulating information from some
interpreted world Xi to some expected world Xi

e; an
expected world is theorized through abstraction of the
interpreted world. We model the outcome of this abstraction.

For game design, the interpreted world is scrutinizable:
it is the information that defines a virtual world. This
world encompasses geometrical and physical information;
the former to define consistent & transformable primitives
in Euclidian space, and the latter to define model behavior
with respect to light, sound, and motion. A virtual world is
an interpretation of the external world, codified via a physics
engine (Gregory 2017) as an assignment of values for the
independent parameters needed to uniquely determine all the
properties of every geometric primitive in the virtual world,
including position and orientation (with relevant higher-
order derivatives), at a time index t. An assignment of values
for all such parameters is the world’s state (at t).

Let CVW be a partially-ordered set1 of these independent
parameters; CVW represents a Concrete Virtual World. This
world contains the more-quantitative reasoning we care to
abstract: a function fC that maps elements from CVW to
itself—fC : CVW → CVW.2 In other words, fC captures
the concrete meaning one is interested in abstracting. Taken
together, the tuple 〈CVW, fC〉 is a concrete engine; CVW is
its representation and fC is its reasoning.

I assume that (for whatever reason) fC is not efficiently
computable for the Concrete Virtual World; i.e. either fC is
not computable or fC’s underlying algorithm fails to satisfy
a design constraint on the resources it consumes during
computation. This motivates introducing an efficiently com-
putable way of reasoning, that operates over an alternate
representation of CVW and preserves the semantics of fC
for the reasoning we want to perform via fC . This alternate
representation and reasoning is an abstraction of a concrete
engine and is called an abstract engine. The abstraction is
proper just when |CVW|>|AVW|.

An abstract engine is defined as a tuple 〈AVW, fA〉,
where AVW is another partially-ordered set representing
an Abstract Virtual World and fA is a function that maps
elements from AVW to itself—fA : AVW → AVW. In effect,
fA is the abstract reasoning one wants to perform.

An abstract engine is defined relative to a concrete engine
via an abstraction scheme. Conceptually, the scheme is
a method for partitioning the set CVW into subsets of
parameters that can be reasoned over, where each subset
has some meaning beyond what its elements intrinsically
represent; this meaning emerges from the structural group-
ing of the elements in the set. The set of all the subsets
in the partition is the abstracted representation of CVW,
the AVW. For example, one might define a triangle as a
geometric primitive withinCVW as a triple of points4123 =
〈p1, p2, p3〉 relative to some Cartesian system in the R3

Euclidian space; i.e. pi ∈ R3. A common abstraction is to

1Thus, certain set elements cannot be relatively ordered; e.g. a
mesh’s position & orientation in a CVW are both numerical, but
neither precedes the other because they are different concepts.

2We omit dimensionality, but all functions can be multivariate.

Figure 3: A conceptual diagram of an abstraction scheme.
It is defined to carry out more-qualitative reasoning via
an efficiently computable function fA over AVW as a
proxy for more-quantitative reasoning via a non-efficiently
computable function fC over CVW. An open question for
any scheme is how close the qualitative reasoning matches
the quantitative reasoning it aims to abstract; that is, if we
let a← L(c), then ∀c ∈ C : fC(c) ?

= (G ◦ fA)(a).

group 2 or more triangles into a mesh; here, the elements of
CVW are triangles, whereas those of AVW are meshes.

An abstraction scheme is formalized via two functions.
One is a lifting function L which takes elements from CVW
and maps them onto AVW—L : CVW → AVW. It abstracts
element c in CVW by providing its qualitative meaning in
terms of the set it is a member of within AVW.

The other is the lifting function’s inverse: it is a ground-
ing function G : AVW → CVW. It concretizes element a in
AVW by providing the semantic meaning of a in terms of a
potentially-partial assignment of values to elements in CVW.

An abstraction scheme, illustrated conceptually in Fig-
ure 3, groups the aforementioned elements; i.e. it is a tuple
Υ = 〈CVW, fC , AVW, fA,L,G〉.

An Example Abstraction Scheme: Pathfinding This
model affords stating the result of abstraction in game
design. To evidence its utility, I apply it to pathfinding—the
calculation of a suitable route through a virtual world from
a start position to an end position, which “is everywhere in
game AI” (Millington 2019 p.195).

Pathfinding algorithms typically do not operate over the
geometry of the virtual world. Instead, they rely on a repre-
sentation of it, often – not always (cf. Goodwin, Menon, and
Price 2006) – a directed weighted graph: vertices represent
world areas and weighted edges represent ease of access
between connected ones. Abstraction schemes have been
called “division schemes” (Millington 2019 p.237) with
“quantization” & “localization” functions. I formalize and
generalize all three notions.

While one might deem pathfinding irrelevant to game
design, I argue it can certainly be a key part. Consider games
that involve predicting what enemies will do to survive; e.g.
Firefight in Halo: Reach (Bungie 2010). The path enemies
take (fA) to get closer to the player is critical; characters
might find different paths based on health or rank (e.g.
Grunts v. Elites). Thus, the example is both accessible and
directly relevant to game design.



Figure 4: A commonly-used abstraction for pathfinding: a
tile-graph (Millington 2019). The illustrated abstraction is
valid, because ∀a ∈ AVW : (fC ◦ G)(a) ≤ (G ◦ fA)(a).

When pathfinding (pf) in Figure 4’s virtual world, the
Concrete Virtual World we care about is the World Space.
The concrete reasoning to perform is: move from some
position c = (x, y) ∈ R2 = CVW to a target position c′ ∈ R2

(marked ⊗ in Figure 4) while never moving outside the
configuration space (Lozano-Pérez 1990): agent-reachable
areas. I denote the movement to execute as fpf(c, c

′,R2).
To perform this reasoning in a domain-independent

manner, we must specify an abstraction scheme, because fpf
is non-efficiently computable. There is a vast range of values
between any two points in R2’s configuration space and
searching through them is infeasible. The scheme illustrated
in Figure 4 is referred to as a tile-graph (Millington 2019 p.
239): CVW is effectively partitioned into a grid made up of
square tiles of size s ∈ R. The tiles implicitly define AVW
as a directed graph representing Graph Space. Assuming
that AVW is represented as a 5 × 5 matrix S where cells
represent nodes and cardinally-adjacent cells have directed
edges between them, we can define the lifting and grounding
functions relative to the matrix rows (r) and columns (c) as:

Ltile(x, y, s) = (r, c) Gtile(r, c, s) = (x, y) where,
r = by/sc x = (c× s) + s/2

c = bx/sc y = (r × s) + s/2

I adopt A* for qualitative reasoning, “the canonical algo-
rithm for pathfinding in games” (Sturtevant et al. 2019 p.80).
It finds a sequence of edges from node a = (r, c) ∈ S =
AVW to a target node a′ ∈ S. I denote the path to follow as
fA*

(
a, a′,S

)
. The tile-graph scheme is thus:

Υpf
tile =

〈
R2, fpf,S, fA* ,Ltile,Gtile

〉

Modeling Tradeoffs via Scheme Properties
An abstraction scheme does not require any guarantees be-
tween the more-quantitative reasoning we want to perform
via fC and the more-qualitative proxy reasoning that fA
purports to represent. If fC is not efficiently computable,
and we rely on fA to approximate it, it becomes important
to know the properties of the scheme that relates them.

Further, abstraction schemes do not prescribe a particular
choice of lifting or grounding functions. As defined, they
allow designers to compare and contrast different abstrac-
tions of virtual worlds. The question then becomes: when is
a particular abstraction scheme useful? This question may
guide the choice of particular lifting or grounding functions
based on the resulting properties of the defined scheme.

Thus, abstraction schemes afford a computationally-
precise language to reason about tradeoffs for qualitative
reasoning: their properties define the space of potential
features to balance when considering choosing one scheme
over another. I propose that evaluating the utility of an
abstraction scheme is tantamount to evaluating the utility of
a KR. As first discussed by McCarthy and Hayes (1981),
later refined by Wilensky (1984) and Chittaro et al. (1993), a
KR has several roles that underlie its utility. These roles have
been inconsistently interpreted over time. I operationalize
these polysemic roles as properties for abstraction schemes
via mathematical formalisms that represent them.

An important drawback of these mathematical definitions
is that they are not necessarily directly computable. The
equations are presented to precisely capture the intuition of
what they represent; in general, they may be computable via
an alternative formulation or clever insight to the problem.

Validity Whether fA is a valid abstraction of fC . A
function is valid when defined for every element of its
domain. However, a scheme is valid if fA preserves the
monotonicity (i.e. order) of fC .

valid(Υ) =

{
true ∀a ∈ AVW : (fC ◦ G)(a) ≤ (G ◦ fA)(a)

false otherwise
(1)

In essence, validity depends on how the abstract engine is
grounded. The tile-graph in Figure 4 is valid: it depicts the
intuition that elements in the AVW can either be (a) first
grounded and then quantitatively reasoned over (the left-
hand side of Equation 1), or (b) first qualitatively reasoned
over and then grounded (the right-hand side of Equation 1).
This is because method (b) preserves the order of results of
method (a). For this scheme, both Equation 1 sides are equal.

Distortion How close the grounded result of fA is to
the application of fC for all potential applications of those
functions. For a given scheme Υ: if we let a ← L(c), we
care to know ∀c ∈ C : fC(c) ?

= (G ◦ fA)(a).
Distortion is particularly important in proper abstract

engines: because |CVW|>|AVW|, there is loss of information
when going from CVW to AVW. That loss manifests when
grounding information from AVW back to CVW.

Distortion provides an expected value for the loss of
precision, i.e. the error during abstract reasoning. For c ∈
CVW, the scheme’s error is

∣∣fC(c) −
(
G ◦ (fA ◦ L)

)
(c)
∣∣.

Whereas error is element-wise, distortion is the expected
value of error for all elements. Canonically per rate-
distortion theory (Shannon 1959), it is the mean-squared
error (MSE):

distortion(Υ) =
1∣∣CVW
∣∣ ∑
c∈CVW

(
fC(c)−

(
G ◦ (fA ◦ L)

)
(c)
)2

(2)



For pathfinding, this is not directly computable: |R2| is the
cardinality of the continuum, denoted c; further, 1/c = 0,
rendering Equation 2 useless.

Distortion is, however, approximable: because CVW is a
virtual world, the range of R2 is given by the floating-point
precision that represents it. Thus, we might estimate the
distortion by sampling in the space of floating-point values.
We do not compute it here, but note: this approach treats the
MSE as one of estimation with Expected value, such that:

distortion(Υ) = E

[(
fC(c)−

(
G ◦ (fA ◦ L)

)
(c)
)2
]

Adequacy The degree to which the abstraction scheme
permits expressing the state of the CVW that is important for
reasoning within the AVW, for all such states one needs to
consider. For instance, a pathfinding (pf) abstraction scheme
Υpf

1 would be less adequate than another such scheme Υpf
2 if

there was a position in world space our character could be
in that could not be mapped onto a node in the graph space
via Υpf

1 but could be mapped via Υpf
2 . We quantify this using

Iverson’s bracket notation as:

adequacy(Υ) =

∑
c∈CVW

[
L(c) = ∅

]
∣∣CVW

∣∣ (3)

The scheme in Figure 4 is not fully adequate: there is a
portion of the triangle obstacle that occupies part of a tile
that is represented in the Graph Space. The rest of the CVW

is adequately represented via Υpf
tile.

Flexibility The degree to which the scheme’s AVW sup-
ports multiple forms of meaningful qualitative reasoning
over the CVW. In essence, this affords the possibility of
leveraging an abstraction scheme for a large variety of tasks.

Plainly, flexibility is the size of the function space over
AVW whose results can be mapped onto CVW. The function
space – i.e. set of all functions – over AVW is denoted as the
exponential object AAVW

VW . In set-builder notation:

flexibility(Υ) =
∣∣∣{f | f ∈ AAVW

VW ∧ ∃a ∈ AVW : (G ◦ f)(a) 6= ∅}
∣∣∣

(4)
Flexibility of Υpf

tile is assessed via constructive proof: it
requires evidencing every alternate qualitative reasoning fA
that has a meaningful interpretation in the CVW. Minimally,
Υpf

tile is flexible in that it affords reasoning with other
pathfinding algorithms that operate on the basis of G.

Efficiency The resource cost that underlies the scheme’s
lifting, qualitative reasoning, and grounding; i.e. the com-
bined algorithmic efficiency ofL, fA, and G. There are many
ways to characterize efficiency, and it is important to qualify
it with respect to particular methods and dimensions.

Efficiency can be assessed rationally via complexity
analysis and empirically via performance benchmarking. It
can focus on time, space, electrical energy usage, etc. For
example, we might characterize reasoning efficiency with
respect to the scheme’s Big O time complexity as:

efficiencycomplexity
time (Υ) = O(L) +O(fA) +O(G) (5)

Applying Equation 5 to Υpf
tile means that our tile graph

abstraction’s efficiency is tantamount to the efficiency of A*;
both Ltile and Gtile have constant time complexity. The time
complexity of A* depends on its heuristic function h(x);
assuming that the search proceeds on G as a tree yields
performance on the order of O

(
log h∗(x)

)
, where h∗(x) is

the optimal heuristic estimate from node x to the goal.

Cognitive Coupling The degree to which the abstraction
scheme’s qualitative reasoning corresponds to how it is cog-
nized by relevant stakeholders. While an abstraction scheme
is designed for the purpose of carrying out more-quantitative
reasoning in a more-qualitative fashion, schemes may have
consequences that are displayed in virtual worlds (e.g.
Halo: Reach’s Firefight). Thus, it may be crucial to define
the scheme such that it reflects how relevant stakeholders
conceptualize what is being represented. This includes
other designers who will manipulate what is abstracted and
players who will be interpreting the resultant abstractions in
order to play (Juul 2007). Succinctly, it “requires that our
representations are canonical with respect to understand-
ing.” (Wilensky 1984 p.4, emphasis in original).

Cognitive coupling is difficult to assess because it is a
perceptual measure. If we take it to mean perceptual quality
– the character of the qualitative reasoning as judged relative
to someone’s conception of the reasoning “in nature” – we
face the problem that “distortion and perceptual quality are
at odds with each other” (Blau and Michaeli 2018 p.6228).
One way to assess coupling based on perception is via the
mean opinion score of human subjects in an experiment
judgement task: the participants must judge whether some
stimuli is “natural” or the output of some algorithm.

In this evaluation, two probability distributions are being
compared: (1) phuman

Υ , the distribution of behaviors deemed
natural by people for the phenomenon that is abstracted by
Υ and (2) pperceived

Υ , the distribution of perceivable behaviors
intended to be captured by fA as grounded and rendered in
CVW. The purpose of the experiment is to determine what is
the probability of judgement success, which is given by:

psuccess(Υ) =
1

2
δTV(phuman

Υ , pperceived
Υ ) +

1

2
(Moorthy and Bovik 2011)

where δTV(·, ·) is the Total-Variation (distribution) distance.
The probability psuccess(Υ) decreases as δTV decreases. In
the best case phuman

Υ = pperceived
Υ , such that psuccess = 1/2 (no

better than a coin flip). Based on this, a parsimonious way to
define cognitive coupling is:

cog-coupling(Υ) =
p̂success(Υ)

1
2

= 2× p̂success(Υ) (6)

where p̂success is the probability of judgment success, as
assessed experimentally. While I have not conducted such an
evaluation for Υpf

tile, I expect it would succeed: A* will result
in observably field-expedient behavior that would match a
rational agent’s “natural” movement through space.



Conclusion
I have, for the first time, articulated a human-centered com-
putational science-based model of abstraction: abstraction
schemes are a model of the outcome of human processes that
conceptualize more-quantitative phenomena in a concrete
virtual world in terms of a more-qualitative representation in
an abstract virtual world. My model is primarily theoretical
and is the basis for my future work of interest: the simulation
of the human process of abstraction. I expect that process
to be guided by the space of potential tradeoffs to make in
converging upon one abstraction scheme over another. To
that end, I have also mathematically defined 6 abstraction
scheme properties – guided by foundational work in KR
within AI – which I posit are key dimensions of that
tradeoff space. My intent is to use these analytic metrics in
a generative capacity, and future work will discover how.

Abstraction and its formalization are applicable across
a wide-array of areas in theoretical and applied computer
science, including programming languages, artificial in-
telligence, and human-computer interaction. Further, the
running example illustrates the analytic utility of abstraction
schemes and tradeoffs for pathfinding, a core technique
within game AI. Pathfinding is foundationally a search
problem; that diverse types of computational problems (e.g.
decision problems, optimization problems) can be framed
as search problems speaks to the potential of abstraction
schemes and their properties to be useful for a wide array
of approaches to computational game design.

Finally, I revisit an earlier point: abstraction is pervasively
implicit within AIIDE-relevant research. Thus, this work
can serve as a common framework to support system-
aticity within our community. Abstraction schemes and
properties afford computationally-precise comparison of
diverse approaches to qualitative reasoning about a common
phenomenon. While we cannot do so here due to space,
promising comparisons include: procedural narrative gen-
eration via linear logic (Martens 2015) v. planning (Young
et al. 2013) and experience management via game-tree
search (Robertson and Young 2018) v. Markov decision
processes (Thue and Bulitko 2012). In the long term, we
hope our formal theory of design abstraction evolves into
a formal theory of game design that affords systematically
understanding the space of AIIDE-relevant research.
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