
Re-examining the Planning Basis of Goal-driven Autonomy Problems

Rogelio E. Cardona-Rivera,1 M. Gardone,1 Logan Peterson,1 Laura M. Hiatt,2 Mark Roberts2

1Laboratory for Quantitative Experience Design
School of Computing and the Entertainment Arts and Engineering Program, University of Utah, Salt Lake City, UT, USA

2Navy Center for Applied Research in AI
Naval Research Laboratory, Washington, DC, USA

{rogelio@cs., m.gardone@cs., logan.peterson@}utah.edu, {laura.hiatt, mark.roberts}@nrl.navy.mil

Abstract

The study of goal-reasoning agents capable of integrated ac-
tion and execution has received a great deal of attention in
recent years. While practical implementations and theoretical
insights of such agents have provided a wealth of flexible be-
havior in a variety of task environments, they tend to focus
on complex environments that are far from classical planning
assumptions. This paper formalizes classical planning prob-
lems where an agent can change its goal(s) during execution.
We identify the minimal changes to classical planning and
formalize a model that supports “classical goal reasoning.”

1 Introduction
Allowing an agent to modify its goals during execution chal-
lenges several core assumptions of the classical planning
model. It is perhaps unsurprising that most studies in goal
reasoning (also called goal-driven autonomy) have favored
environments that relax the classical assumptions by be-
ing partially-observable, non-deterministic (including those
with exogenous events) or being open worlds (Aha 2018).
However, there remain problems that are very close to clas-
sical ones, especially for deterministic and fully-observable
environments.

Several scholars have developed formal theories of goal
reasoning systems. For instance, Hawes (2011) distilled four
reasons why an agent might exhibit goal reasoning, calling
for their formalization. Later, Harland et al. (2014) formal-
ized an operational semantics for a Belief-Desire-Intention
(BDI) agent architecture capable of a vast array of goal rea-
soning mechanisms. More recently, Dannenhauer, Muñoz-
Avila, and Cox (2021) formalized a comprehensive theory
of how goal-driven agents might reformulate goals based on
violated expectations. While these models have significantly
advanced our understanding of goal-driven autonomy, their
studies began with a planning model that was significantly
more complex than classical planning.

There remains a gap somewhere between the full set of
classical assumptions (that would only require a classical
planner to solve) and the complexity of typical problems
studied in goal reasoning research. In this paper we fill that
gap by investigating the minimal classical assumptions that
must be relaxed to arrive at “classical goal reasoning.”

Contributions We found that we are able to parsimo-
niously describe classical goal reasoning via what we term
a goal transition system—a novel structure that explicitly
represents the hypergraph induced by goals over a classical
planning problem’s state-transition system. Our other con-
tributions include:
• Formalizing the distinction between a closed (goal) prob-

lem, typical of classical planning, and an open problem
that requires goal reasoning.

• Codifying which classical assumptions must change to
support the definition of classical open problems.

• Sketching a goal reasoning system-agnostic language for
syntactically defining goal reasoning problems that we
call GRUPS: the Goal Reasoner ∪ Problem Solver.

• Discussing our motivating use-case for classical goal rea-
soning via a GRUPS-based specification.

A Motivating Example: Adventure Games Consider the
task of designing an AI capable of playing adventure games,
a kind of interactive narrative experience wherein the protag-
onist (typically, a human “player”) drives the development
of an unfolding plot (Riedl and Bulitko 2013). Canonically,
these storygames present a verb-based command interface
with 9 template commands as in Figure 1. Players can OPEN
unlocked doors, PICK UP co-located items, DROP items from
the inventory, CLOSE unlocked open doors, LOOK AT ob-
jects, GO TO cardinally-adjacent locations and through open
doors, GIVE inventory items and TALK TO co-located char-
acters, and USE inventory items on other objects (e.g. use
keys on locked doors to unlock them).

As a task domain, adventure games have a finite set of
states and are deterministic. The actions that players can per-
form (all instances of the template commands) execute in-
stantaneously. The virtual world extends beyond what is vis-
ible in Figure 1’s interface window, but the standard conven-
tion of adventure games is that the plot’s time-flow is halted
to invite attention on the interplay of elements within a lim-
ited area of spacetime (Black 2012). Thus, players expect
that by default nothing changes beyond what they immedi-
ately see or do, making the environment effectively fully ob-
servable and static.

At first glance, all we might need to rely on for the AI’s ar-
chitecture is a classical planner like STRIPS (Fikes and Nils-

Figure 1: Screenshot from a canonical adventure game, with
a verb-based command interface. Although classical plan-
ners could ostensibly play these games, the lack of formal
semantics for changing goals precludes them from doing so
in a systematic manner.

son 1971) coupled with a pipelined machine scheduler, es-
pecially because the main thing to do in these games are
quests—i.e. executing (any sequence of) actions to establish
conditions that are distinguished by the game due to their
narrative import (Cardona-Rivera, Zagal, and Debus 2020).
But despite this task environment meeting nearly all assump-
tions1 that define the classical model, off-the-shelf classical
planners would fail to meet this challenge due to their inabil-
ity to systematically handle a change in goals.

This kind of problem requires the ability to perform goal
reasoning. However, (as mentioned) agents that exhibit this
kind of goal-driven autonomy today are built for partially-
observable and dynamic environments, based on the tacit
assumption that these features are intrinsic to the class of
goal reasoning problems.

While modern goal-driven agents would undoubtedly suc-
ceed at playing an adventure game, they are mismatched to
the task environment at hand. With an excess of capability
on one hand, and a lack of capability within classical plan-
ning on the other, we are left with the question: might there
be a middle ground? We explore an answer to that question
by critically unpacking the planning basis that goal-driven
autonomy was built upon.

2 Related Work
Goal-driven autonomy is a conceptual model, invented
to facilitate developing agents that exhibit goal reasoning
dynamics—the adoption, (re)formulation, and abandonment
of goals—as a key part of the principles that govern their be-
havior (Molineaux, Klenk, and Aha 2010). It emerged as an
extension of the dynamic planning model by Ghallab, Nau,
and Traverso (2004), which itself describes agents capable

1Adventure games do not meet the offline planning assump-
tion, which requires integrated planning and execution.

of generating goal-directed behavior from a given goal in
terms of three elements: (1) the system, representing the
agent’s task environment, (2) a planner, the agent compo-
nent responsible for organizing behavior toward satisfying
the goal, and (3) a controller, the agent component respon-
sible for manifesting the behavior in the system.

Today, scholars consider dynamic planning as one of the
four capabilities that distinguish goal-driven behavior from
other forms of autonomy (Aha 2018). The other three defin-
ing capabilities are the explicit representation, generation,
and selection of goals (Hawes 2011; Dannenhauer, Muñoz-
Avila, and Cox 2021). However, work in this area has pro-
ceeded with a conflicted understanding of what problem
goal-driven autonomy is intended to solve. This conflict has
manifested in three ways that threaten systematic progress
in research on goal-driven autonomy (GDA).

First, we cannot yet precisely state what features of a
problem would motivate the use of GDA. To date, GDA
problems are specified within particular goal reasoning ar-
chitectures, each handling unique execution-level concerns
for the agent. As surveyed by Vattam et al. (2013), these
concerns include the discovery of new actions, detection of
higher-utility opportunities, violation of expectations, and
graceful degradation of performance, among several others.
But despite the array of capabilities, we have yet to artic-
ulate a common ground that would allow us to distinguish
situations in which the problem at hand calls for revision
of the goal being pursued as opposed to plan repair or re-
planning. Relatedly, we are unable to specify GDA prob-
lems in a domain-independent way—unlike dynamic plan-
ning ones, which benefit from several planner-agnostic lan-
guages like PDDL (McDermott et al. 1998).

Second, we cannot yet precisely state what a GDA prob-
lem represents. GDA problems have been framed as a com-
putational model of problem recognition—the human cog-
nitive process that articulates which goals need solving (Cox
2020). Confusingly, all of GDA’s defining capabilities can
manifest within dynamic planning alone. This is because
a planner is responsible for ensuring that an action’s pre-
conditions are satisfied and not undone from the moment
they are established until they are needed. Every action with
unsatisfied preconditions affords the planner’s generation
of (sub)goals, and the planner must perform a selection of
which goals to satisfy first (potentially impacting the time
needed to satisfy them all). While classical planners need
not reify goals to perform their function, plan space plan-
ners do—albeit in terms of flaws that must be refined via
fixes (cf. Weld 1994; Kambhampati, Knoblock, and Yang
1995). Is this goal-driven autonomy? It would seem so, al-
though based on the available literature, subgoaling on un-
satisfied preconditions does not exemplify what is colloqui-
ally meant by “goal-driven autonomy.”

Third, we cannot yet precisely state what a GDA prob-
lem is. Originally, it was defined as a dynamic plan-
ning and execution problem over a partially-observable,
non-deterministic, and dynamic system with continuous
(i.e. non-discrete) effects, where in addition the agent can
change its goals (Molineaux, Klenk, and Aha 2010). Today,
state-of-the-art approaches to GDA only require the agent

be able to observe its environment for discrepancies, hy-
pothesize explanations for them, and formulate goals to re-
solve the discrepancies that target the hypothesized expla-
nations (Cox 2020; Dannenhauer, Muñoz-Avila, and Cox
2021). This suggests that even within GDA there are differ-
ent problem classes. Without clarifying what the different
problems are, a systematization is out of reach.

Due to the conflicted understanding of what problem
GDA is intended to solve, several scholars have questioned
the need to distinguish goal-driven autonomy in its own
right, in favor of simply recasting GDA problems as spe-
cialized dynamic planning ones. For instance, Harland et al.
(2014) have demonstrated that goal-driven autonomous be-
havior can be richly specified in terms of Belief-Desire-
Intention (BDI) agent architectures. Is a commitment to
models of BDI necessary to GDA? In contrast, Paredes and
Ruml (2017) have argued that GDA is tantamount to dy-
namic planning across multiple levels of abstraction—they
contend that this insight obviates the need for goal reasoning
altogether. Does that preclude the utility of specifying cer-
tain problem classes as problems of goal-driven autonomy?
Is there a class of GDA problems that cannot be systemati-
cally transformed into dynamic planning?

In view of this conflicted understanding and the questions
that it poses, we propose it is worthwhile to re-examine the
planning basis of goal-driven autonomy so that we may bet-
ter understand its formal basis. In this paper, we do just that.

3 From Classical Planning to Classical Goal
Reasoning: A Modest Proposal

Classical planning problems are well-defined: they contain
a clear specification of the current situation, the desired end,
and the available means to arrive at said end from the current
situation (Newell, Shaw, and Simon 1960). These problems
can be represented via STRIPS as follows.

Definition 1 (Classical Planning Problem) A tuple of the
form P = ⟨L, I, g,Λ, fcost⟩. L is a set of ground literals
drawn from a finite and function-free first-order logical lan-
guage, I ⊆ L is a closed-world initial state, and g ⊆ L
is a set of goal conditions that must be satisfied. Λ is a set
of action templates called operators. Each operator λ ∈ Λ
is a triple ⟨PRE(λ), ADD(λ), DEL(λ)⟩ of respective precon-
dition, add, and delete lists, all subsets of L. Each operator
has an associated cost to execute, determined by the function
fcost : Λ → R0+; unless stated otherwise, we use fcost = 1.

The STRIPS representation is one way to encode a state-
transition system, which specifies how some task environ-
ment can change as a result of applying actions in states.

Definition 2 (State-transition System) A quadruple of the
form Σ = ⟨S,A,E, γ⟩. S is a set of states. A is a set of
actions that represent state-transitions under the control of a
planner. E is a set of events, or contingent state-transitions;
these reflect the internal dynamics of the system not under
the planner’s control. γ : S×A×E → 2S is a state-transition
function that defines the state space of the system.

As noted by Ghallab, Nau, and Traverso (2004, hereafter,
GNT), state-transition systems induce a directed graph that

reflects the underlying (set-theoretic) semantics of planning,
whereas STRIPS is a kind of syntactic specification. This dis-
tinction was introduced as part of GNT’s conceptual model
for dynamic planning, to indicate that (regardless of im-
plementation) all dynamic planning variants perform opera-
tions that can be described in terms of Σ, making it a useful
semantic basis of comparison.

The classical planning variant operates over a restricted
form of the elements in Σ by adopting a set of 8 simplifying
assumptions over the GNT model. These are:

A1 Finite Σ: S ∈ Σ is finite.
A2 Static Σ: E = ∅.
A3 Fully Observable Σ: The agent has complete knowl-

edge about the state of Σ.
A4 Deterministic Σ: ∀s ∈ S, a ∈ A : |γ(s, a)| ≤ 1. Thus,

γ maps onto S, instead of 2S .
A5 Restricted Goals: Goals are either an explicit goal state

sg ∈ S or a family of goal states Sg ⊆ S, defined as:

Sg = {s | (s ∈ S ∈ Σ) ∧ (s |= g ∈ P)} (1)

The solution is any sequence of state-transitions that
results in sg or s ∈ Sg .

A6 Sequential Plans: A solution to a planning problem
is a plan π, a linearly ordered finite sequence of ac-
tions; i.e. a net in A, written as π : N → A or π : AN.

A7 Implicit Time: Actions A and events E have no dura-
tion; they are instantaneous state-transitions.

A8 Offline Planning: The planner is not concerned with
any change that may occur in Σ while it is planning
(it plans for the given initial and goal states).

Thus, the classical variant effectively disregards the con-
troller and system in the full GNT model.

Given a problem P as in Definition 1, its underlying clas-
sical state-transition system Σ(P) is defined as: S ⊆ 2L; A
is composed of all λ ∈ Λ; E = ∅; and γ is piece-wise:

γ(s, a) =

{
s \ DEL(a) ∪ ADD(a) if PRE(a) ⊆ s

s otherwise

The STRIPS classical variant compactly represents P as a
search problem over the graph induced by Σ(P) starting in
I ∈ S and ending in a state s ∈ Sg ⊆ S.

Further, STRIPS is a specific syntactic specification; i.e. it
gives a particular form to classical planning operations,
which can be conceptually described via a function φ as
illustrated in Figure 2. In other words, a generic classical
planner φ performs a mapping as follows:

φ : γ × S × S → π (2)
state space

family of states Sg ⊆ S

initial state I ∈ S

plan

Thus, φ takes the elements of a classical planning problem
and maps them onto a plan structure. Of course, a specific
implementation of φ (e.g. STRIPS) must ensure that π trans-
forms the problem’s initial state I to a state s ∈ Sg ⊆ S

that satisfies the goal, or fail by returning a null plan. But
regardless of implementation, the structure of the mapping
in Equation 2 is conceptually the same across the class of
classical planners.

3.1 Classical Execution Problems
Our motivating example from §1 is not strictly a classical
planning problem, as it relaxes assumptions A6 and A8.
This re-introduces the task environment that was removed
for classical planning, which in turn requires that we be more
precise about the interplay between planner and system, as
mediated by the controller. For brevity, we refer to what re-
sults from these relaxations as classical execution problems.

Definition 3 (Classical Execution Problem) A tuple of the
form X = ⟨P,Σ⟩, where P is a classical planning prob-
lem as in Definition 1, and Σ is a classical task environment
defined as Σ = Σ(P).

Whereas the system Σ typically represents an analog task
environment, Definition 3 admits it as a discrete one; i.e. the
virtual world encompassing an adventure game. Conceptu-
ally, a classical execution problem X places one additional
demand on solution plans: a plan π is a solution plan when
its execution trace within Σ = Σ(P) yields a system state
that satisfies the goal conditions. In order to precisely de-
scribe what this means, we must revisit the full GNT model.

Conceptual Gaps within the GNT Model Originally, the
GNT model was presented as a theoretical device and was
“...not meant to be directly operational” (Ghallab, Nau, and
Traverso 2004, p. 9). Our rendition in Figure 2 is unique in
that regard: it foregrounds ambiguities in the GNT model that
lead to our motivating example’s failure case.

Per the GNT model, the controller is responsible for
observing the system Σ and using that information to
drive the dispatching and monitoring of its given plan as
it manifests inside the system. Because of the execution
requirement, π is revised to be:

π : S × AN → A (3)
the current plan action sequence

state we’re in next action to execute

Further, the controller’s components are defined as follows.

Observer This is the controller’s capacity to perceive the
system. It was originally defined by GNT as a function with
corresponding inverse:

η : S → O (4)

η−1 : O → S (5)
observations O ∈ Σ

Equation 4 relates states to observations. Generally, an ob-
servation o ∈ O ∈ Σ represents information from Σ ob-
tained through (typically hardware-based) sensors.

In classical execution we make O = S ∈ Σ and η the
identity function, which via its inverse in Equation 5 obtains
the current state scurrent ∈ S ∈ Σ(P) = Σ.

Controller
Monitor

Plans,

Description of System ⌃ = hS, A, �i

Objectives,  
G ✓ S

Initial State, 
I 2 S

� : S ⇥ A ! S

Planner
<latexit sha1_base64="12p9vZDaxdLsF7FtyKx/keI2PHA=">AAACP3icbVDLSgMxFM34tr6qLt0Ei+CqzIioOwU3Ln1VBaeUO2naBvMYkjuVMvRz/BDXbnXhF4gbcevOTC2i1QMhh3Puzb05SSqFwzB8DsbGJyanpmdmS3PzC4tL5eWVC2cyy3iNGWnsVQKOS6F5DQVKfpVaDiqR/DK5OSz8yy63Thh9jr2U1xW0tWgJBuilRnk/7oJNOyIuntJxG5SCGIXijp5931a0OwjWmluaDwptbnmzH6ei3yhXwmo4AP1LoiGpkCGOG+XXuGlYprhGJsG56yhMsZ6DRcEk75fizPEU2A20+bWnGvwK9XwwtE83vNKkLWP90UgH6s+OHJRzPZX4SgXYcaNeIf7rFQoaI93IAtjaq+dCpxlyzb7mtzJJ0dAiTNoUljOUPU+AWeG/QFkHLDD0kZd8NtFoEn/JxVY12qlun2xXDk6HKc2QNbJONklEdskBOSLHpEYYuSMP5JE8BffBS/AWvH+VjgXDnlXyC8HHJ8JTslQ=</latexit>

' : � ⇥ S ⇥ S ! ⇡

Actions, A

Dispatcher

System 𝚺

Observations, O

Execution Status, U

<latexit sha1_base64="OM9R+ChpuKy/YuBbc8nCPHgmtcM=">AAACe3icdVFNi9swEJXdj92mH+ttj72IhkIpi5Hjr/i20Etv3ZZmdyE2QVaURESWhCS3BOMf2mOP/RGFytkU2tAOCB5v3psZzdSKM2MR+ub59+4/eHhy+mj0+MnTZ2fB+fNrI1tN6IxILvVtjQ3lTNCZZZbTW6UpbmpOb+rtuyF/84Vqw6T4bHeKVg1eC7ZiBFtHLYKu3GKlcDlUErDr9kDP9bquOhSiOIuTyQUKo2mBigEUUZGnaf+h72FpWUMNPLIU02ySFE6JIhQn6QDiKM3zvlTMeTRbbyzWWn6Fs0UwRmGaxSjJoJPtw4E8dt2mMDowY3CIq0Xwo1xK0jZUWMKxMfMIKVt1WFtGOO1HZWuowmSL13TuoMBuvqrbj9fD145ZwpXU7gkL9+yfjg43xuya2ikbbDfmODeQ/8wNjJWSm6MB7GpadUyo1lJB7vqvWg6thMMh4JJpSizfOYCJZu4LkGywxsS6c43cbn4vAP4fXE/CKAuTj8n48tNhS6fgJXgF3oAI5OASvAdXYAYI+O6deIF37v30x/5b/+JO6nsHzwvwV/jpL5wfuyI=</latexit>

 : O ⇥ ⇡ ! U
<latexit sha1_base64="e4wsCLA6edWRNs2RCOb5Hih3nrI=">AAADkniclVLdbtMwGHUbfkb564A7JGRRAbtgVeJk+eFq0264QGJMdJvUhMpx3daaE0e2A6oi8w48Ho/AG3CJ0xUEFUjlkyKdnO98Pv6OnFecKe26Xztd59r1Gzd3bvVu37l7735/98GZErUkdEQEF/Iix4pyVtKRZprTi0pSXOScnueXx23//COVionyvV5WNCvwvGQzRrC21GS386Vp0tUxYznPs8Yd+l4So/ilOwzjCLmBBcjzURCYlCyYMXClLuFzuDGXxCEKQit33chDXgtQFPh2rmLm8/YmTBIr39C7fnSAWpmPwhC1LkkSJWFiUqrxh2bfM8akaXrK5guNpRSfev+11a+ltrVt3toktrbQYnvxkZn0B/YvPEgSH9q+H8V+YIEX+qHrQ8/m29YArOtk0v+WTgWpC1pqwrFSY8+tdNZgqRnh1PTSWtEKk0s8p2MLS1xQlTWr6xj4zDJTOBPSfqWGK/b3iQYXSi2L3CoLrBdqs9eSf+21jBaCq40L6FmcNaysak1LcuU/qznUArbvE06ZpETzpQWYSGZXgGSBJSbavuKezeZnAPDf4AzZtIbBu2BweLpOaQc8Bk/BHvBABA7Ba3ACRoB0vnefdF9095xHzivnyDm+knY765mH4I9y3vwAcDgLaw==</latexit>

� : ⇡ � ⌘�1

) � : O!A

Observer
<latexit sha1_base64="TgM3vU+DPMXcr/cYWDaPnfFS3z8=">AAACU3icdZFBb9MwFMfdUNgolHXsyMVahcSFKOm6dL1N4sJh0gal26SmVI770lpz7Mh+AVVR+V58kB124so+AxecrpO6CZ5k6a/f89/2+zvJpbAYBDc170n96bOt7eeNFy+br3Zau6/PrS4MhyHXUpvLhFmQQsEQBUq4zA2wLJFwkVx9qPoX38BYodUXXOQwzthMiVRwhg5NWoMYkMXVOYoOaGzEbI7MGP2dntIfND7RaiYhxQ3uqLN8Ld+Hy7Xv9IFvQCetduAHB73DTpcG/kEnijqRE/1+rx/1aegHq2qTdZ1NWrfxVPMiA4VcMmtHYZDjuGQGBZewbMSFhZzxKzaDkZOKZWDH5Wr4JX3ryJSm2rilkK7opqNkmbWLLHE7M4Zz+7hXwX/2KoJaS/voAZgejUuh8gJB8bv700JS1LQKmE6FAY5y4QTjRrgRKJ8zwzi6b2i4bO4DoP8X5x0/jPzup277+PM6pW3yhuyTdyQkPXJMPpIzMiSc/CS/yG9yW7uu/fE8r3631autPXvkQXnNv4SUtdg=</latexit>

⌘ : S ! O () ⌘�1 : O ! S

<latexit sha1_base64="xQ8TRN2v0CCjwS6xxnScybtXgz8=">AAACQnicdZBPb9MwGMadjbFRBivbkYtFhbTDFDlp1qa3AReO40+7SU1UOa7bWnXsyH7DVEX9PvsgnLmOfYRxQ1w54LRFggleydKj3/O+9usnK6SwQMitt7X9YOfh7t6jxuP9J08Pms8OB1aXhvE+01Kby4xaLoXifRAg+WVhOM0zyS+y+Zvav/jEjRVafYRFwdOcTpWYCEbBoVHzdVKIpL5G4Q84MWI6A2qMvsLVipqhmWZpRfx20IvD+IT4nbgbksiJMGiHUbR8tRw1W8TvxZ0w6mHik4C0o9NatIPTbhcHPllVC23qfNS8S8aalTlXwCS1dhiQAtKKGhBM8mUjKS0vKJvTKR86qWjObVqt1lnil46M8UQbdxTgFf1zoqK5tYs8c505hZm979Xwn15NQGtp7y0AkzithCpK4Iqt35+UEoPGdZ54LAxnIBdOUGaE+wJmM2ooA5d6w2XzOwD8fzEI/aDjR++i1tn7TUp76Dl6gY5RgLroDL1F56iPGLpGX9AN+up99r55370f69YtbzNzhP4q7+cvVa2uPQ==</latexit>

⇡ : S ! A

Figure 2: Illustration of GNT’s dynamic planning model with
added details needed to define classical execution. We go
beyond the GNT model by defining the pipeline of structural
mappings needed to manifest a plan inside the system Σ.
This includes the newly added functions: (a) φ, represent-
ing a generic classical planner, (b) π, representing an exe-
cutable classical plan, (c) χ, representing a generic system
dispatcher, and (d) κ, representing a generic plan monitor.

Dispatcher This is the controller’s capacity to find which
action should be executed next according to both π and the
current state of Σ per η−1.

The dispatcher was only conceptually described by GNT.
We formalize it as a composite dispatch function defined as:

χ : π ◦ η−1 (6)

Observe what state we are in...
...to find the action to do...

...within the current plan.

Equation 6 effectively maps the observations to the plan’s
suggested next action. Stated directly:

χ : O → A (7)

Of course, classical executable plans defined via Equation 3
make no use of state information (i.e. S is not in the domain
of π), so effectively, the next action to do depends solely on
the plan’s action structure.

Monitor This is the controller’s capacity to detect when
plans fail. It was only conceptually described in the GNT
model in terms of a status code, representing a report to the
planner about the execution status of the current plan π.

A status code might prompt the planner to engage in revi-
sion and/or re-planning operations. But because this report-
ing process was not formalized, we discovered an interesting
ambiguity: under GNT, plan revision and re-planning would
only be necessary if we cannot find in π what to do next.

In classical execution, this might happen because we
have achieved the goal or because the current state was not
anticipated. Thus, in addition to looking within π, we also
need information from the environment. This motivated our
formulation of a monitor function, defined as:

κ : O × π → U (8)
Check if η−1(o) |= g status code

3.2 Classical Execution Agents and Solutions
Conceptually, a solution plan to a classical execution prob-
lem must effect a change within the system Σ such that when
the system is observed by the agent (via η−1), the current
state that is perceived scurrent ∈ S ∈ Σ(P) = Σ satisfies the
goal; i.e. scurrent ∈ G, where G is defined per Equation 1.

Because solution plans must be constructively assessed by
the agent’s perceptual abilities over Σ, we reify the agent as:
Definition 4 (Classical Execution Agent) A quadruple of
the form ϱ = ⟨φ, η, χ, κ⟩, where φ is a planner function as
in Equation 2; η is an observer function as in Equation 4; χ
is a dispatcher function as in Equation 6; and κ is a monitor
function as in Equation 8.

A classical execution agent ϱ has the capacity to effect
an executable classical plan π within a classical task envi-
ronment Σ. We denote the execution trace of said plan as
trace(π, ϱ,Σ). An execution trace is the ordered sequence
of alternating states and actions starting in the current state
scurrent ∈ Σ. The sequence results from the application of
action ai obtained via the dispatcher χ ∈ ϱ to the state
si−1; i.e. trace(π, ϱ,Σ) = [scurrent, a1, s1, ..., am, sm].

An executable classical plan π is a solution to a clas-
sical execution problem X = ⟨P,Σ⟩ for agent ϱ iff its
trace(π, ϱ,Σ) results in a system Σ configuration that when
perceived via the observer η ∈ ϱ yields a state scurrent ∈ G
as defined in Equation 1 from the goal conditions g ∈ P.

3.3 Toward Classical Goal-driven Autonomy
Our goal-driven autonomy needs require reasoning about ex-
ecution dynamics in what is arguably their simplest form:
within computer-mediated virtual worlds. As mentioned, ex-
isting GDA solutions relax the A2 and A3 assumptions,
which unduly complicates the algorithm needed to perform
the reasoning we care about. As a comparison: it is as if
all we needed was a classical planner and the only option
we had available was a probabilistic one better-suited for
Partially-observable Markov Decision Processes.

Instead of simplifying non-classical models, we opt to
conservatively expand classical ones to “earn our complex-
ity.” To us, the elements within classical execution problems
are necessary to justify the need for goal reasoning. At the
same time, nothing within classical execution specifies what
we actually need: a formal mapping that defines how the
planner’s input objectives G can systematically change.

When the goals can change, all potential changes implic-
itly define a goal hyperspace over Σ (Cox 2020): the states
SG ⊆ S ∈ Σ reachable from each other via transitions out-
side A (or A ∪ E, as relevant). This makes the semantic
specification of state-transition systems insufficient to fully
describe goal transitions. To that end, we introduce a goal-
transition system as an extension to Definition 2:
Definition 5 (Goal-transition System) A tuple of the form
Θ = ⟨Σ, G,R, β⟩. Σ is a state-transition system as in Defini-
tion 2, G is a set of goal states, R is a set of goal refinements
that represent goal transitions, and β : G × R × S → 2G is
a goal-transition function.
The set of goal refinements R and transition function β are
the goal reasoning analogue of state-transition system ac-
tions A and transition function γ.

Whereas STRIPS may be used to generate the classical
form of the elements in Σ, we lack such a language to gener-
ate the elements in Θ. Notwithstanding, we define Θ’s clas-
sical form as a restricted goal-transition system that adopts
all of the classical execution assumptions and defines its el-
ements as follows:
• Σ = ⟨S,A, γ⟩ is a classical state-transition system de-

fined from P = ⟨L, I, g,Λ, fcost⟩ as discussed earlier.
• G ⊆ 2S , where S ∈ Σ. This reflects the A5 assumption:

only families of goal states defined from sets of conditions
g ⊆ L as in Equation 1 are admissible.

• R contains goal refinements r akin to actions a ∈ A,
each of the form r = ⟨PRE(r), ADD(r), DEL(r)⟩. Instead
of state transitions, they are goal transitions: they com-
pactly describe a wide variety of dynamics that depend on
PRE-adopted goals that might be transformed (possibly
with PREconditions on their transformation), the newly
ADDed goals that are adopted, and the DELeted goals that
are dropped. Like actions, PRE(r), ADD(r), DEL(r) are all
subsets of L. These dynamics manifest in a wide variety
of modern goal reasoning systems (Roberts et al. 2014).

• β, like γ ∈ Σ, is defined piece-wise:

β(g, r, s) =

{
g \ DEL(r) ∪ ADD(r) if PRE(r) ∈ g ∪ s

g otherwise

The above definitions allow us to describe important
classes of goal-transitions in the literature (cf. Cox, Dannen-
hauer, and Kondrakunta 2017), including:

Goal Formulation (Paisner et al. 2014): when an agent
infers a new set of goal conditions from some state. This
is a goal-transition of the form β(∅, r, s) = g, where the
refinement r = ⟨∅, g,∅⟩.
Goal Change (Choi 2011): when an agent transforms an
existing goal into another. This is a goal-transition of the
form β(g, r, s) = g′, where the refinement r = ⟨g, g′, g⟩.

4 Classical Goal-driven Autonomy
In the original definition of goal-driven autonomy, Molin-
eaux, Klenk, and Aha (2010) relaxed assumptions A2, A3,
A4, A6, A7, and A8. They further relaxed a tacit assumption
not codified in the original 8, which we make explicit:

ActionsObservations

Planner

Controller

System 𝚺

Description of System ⌃

Goalie Current Objectives

StateCurrent
Description of 𝚯

Invariant 
Conditions

PlansExecution 
Status

Discrepancies

Expectations

Figure 3: Illustration of our conceptual model for goal-
driven autonomy. To us, goal-driven autonomy requires aug-
menting the dynamic planning model with a goalie, respon-
sible for goal reasoning on as we detail in §4.1.

A9 Static Goals: The planner’s goal does not change.

While this assumption may seem trite by now, we believe its
relaxation is what conceptually distinguishes the goal-driven
autonomy problem class from automated planning.

It is worth noting that Θ is not a classical goal-driven au-
tonomy problem per se, much like Σ is not a classical plan-
ning problem. That is, Σ defines the planning problem space
wherein a planner searches for a solution. By analogy, Θ
defines the goal-driven autonomy problem space wherein a
goal-reasoning system—what we call a goalie in our con-
ceptual model (Figure 3)—searches for a solution.

4.1 Goal-driven Autonomy Problem Definition
The literature on potential reasons that might prompt a
goalie to act is vast (Cox 2007; Weber, Mateas, and Jhala
2010; Muñoz Avila et al. 2010; Talamadupula et al. 2010;
Laird, Rosenbloom, and Newell 2012). The clearest articu-
lation of a common underlying feature is via work by Vattam
et al. (2013) and Cox (2013), who independently argued that
goal reasoning dynamics manifest as a consequence of an
agent’s (domain-specific) anomaly detection mechanisms.

We propose an alternate, albeit consistent, view: that the
situations that would trigger those anomaly detection mech-
anisms have enough commonality to support their specifi-
cation in a domain-independent way. We posit that the com-
mon ground across goalies is their drive to fix broken invari-
ant conditions I—conditions that collectively define a state
of equilibrium the agent must maintain.2 If all invariant con-
ditions are maintained, no goal reasoning is necessary. On
the other hand, any invariant condition being broken is suffi-
cient to check if goal reasoning is required.

2In this light, the anomaly detection mechanisms implemented
in goalies to date are implicitly describing specific invariant condi-
tions to be maintained. If this is so, we should be able to formalize
these tacit invariants in terms of execution problems and solutions,
goal-transition systems, and formal properties thereof. While space
limitations preclude our formal development of these ideas, our fu-
ture work aims to do so.

Conceptually, in order to check against invariant condi-
tions in I being violated during execution, the goalie3 must
sense what the current state is, which is already carried out
by the controller. This suggests to us a natural division of
responsibilities: the goalie computes the system Σ expecta-
tions to monitor for based on I and an input description of
Θ, whereas the controller computes the difference between
the goalie’s expectations and the observed system Σ state.
We term these differences discrepancies and posit that they
prompt the goalie to engage in goal reasoning as appropri-
ate. While we cannot formalize all these operations due to
space, they are consistent with several goalies to date (cf.
Molineaux, Klenk, and Aha 2010; Roberts et al. 2014; Dan-
nenhauer, Muñoz-Avila, and Cox 2021).

To perform the goal reasoning itself, goalies need access
to a collection of “goal operators”—akin to the action opera-
tors Λ in classical planning—to support flexible goal reason-
ing dynamics. We call these template goal operators modifi-
cations, defined as generic forms of the refinements R ∈ Θ.

We can now define the goal-driven autonomy problem
that represents the goalie’s input description of Θ, and which
can describe our motivating adventure game context.
Definition 6 (Classical Goal-driven Autonomy Problem)
A tuple of the form G = ⟨X, I,M⟩, where X = ⟨P,Σ⟩
is a classical execution problem as in Definition 3, I ⊆
S ⊆ Σ is a set of invariant conditions that define states
to maintain in the system, and M is a set of template
refinements called modifications—each defined as a triple
m = ⟨PRE(m), ADD(m), DEL(m)⟩ of respective precondi-
tion, add, and delete lists, all subsets of L ∈ P.

Notably, Definition 6 tracks one goal formula: g ∈ P.
Refinements in M manifest as changes to this goal.

4.2 Toward Goalie-independent Problem Specs
Our proposal to encode invariants as the common feature
to goal-driven autonomy paves the way toward a goalie-
independent problem specification language akin to STRIPS,
which itself affords planner-independent specification of
closed problems. To that end, we introduce GRUPS: the Goal
Reasoner ∪ Problem Solver, a speculative STRIPS-like lan-
guage that aims to afford the expression of classical prob-
lems as per Definition 6. Ultimately, this means one may
eventually use GRUPS to arrive at a precise origin of the el-
ements in Θ from Definition 5 much like STRIPS was used
to generate those of Σ from Definition 2. Here, we limit our-
selves to illustrating how our motivating example might be
encoded via GRUPS.

A Modest Extension to PDDL GRUPS may be feasible to
develop via four extensions to PDDL 3 (Gerevini and Long
2005). We review each to explain their intended purpose.

In PDDL 3, constraints are “over possible actions in the
plan and intermediate states reached by the plan.” Con-
straints operate on both binary and numerical values, and

3We discuss the goalie as if it were a stand-alone component
with a single responsibility (i.e. goal reasoning) working alongside
a planner and controller. While this helps us decouple the scope of
goalie v. planner v. controller concerns, we do not intend to pre-
scribe the choice of how to implement this architecture in practice.

(:constraints ...) ; as per PDDL 3

(:goals ...) ; problem-independent goals go here

(:action pick-up

:parameters (?pc - user ?i - item ?l - loc)

:precondition (and (at ?pc ?loc) (at ?i ?loc))

:effect (and (not (at ?i ?loc)) (has ?pc ?i)))

(:action give

:parameters (?g - char ?r - char ?i - item ?l - loc)

:precondition (and (at ?g ?l) (at ?r ?l) (has ?r ?i))

:effect (and (not (has ?r ?i)) (has ?g ?i)))

(:refinement fetch-quest

:parameters (?p - char ?np - char ?i - item ?l - loc)

:precondition (and (at ?pc ?l) (at ?npc ?l))

:effect (and (has ?npc ?i)))

Listing 1: Sample GRUPS goal refinements in PDDL-like
syntax. The fetch-quest refinement affords an adventure
game AI to adopt a goal from a non-player character. This
goal would prompt planning toward obtaining the character-
requested item and giving the item to said character.

(:constraints ...); problem-specific invariants

(:goals ; implicitly disjuncted goals:

(:goal (...)) ; g1 or

(:goal (and ((has player mcguffin)))) ; g2 or

(and ; the conjunction of goals g3

(:goal (...))

(:goal (...))))

Listing 2: Sample GRUPS problem file in PDDL-like syntax.
Above, the goals keyword affords specifying the goals
managed by a GDA agent, as an implicitly disjuncted set of
(possibly unary) goal sets. The goal g2 appears as a result
of the fetch-quest refinement in Listing 1.

manifest via several built-in predicates; e.g. always, some-
time, within, at-most-once, and several other built-in predi-
cates. Where GRUPS might need to differ from PDDL 3 is
for allowing constraints to be defined per-problem as well.
Problems can define how they must be solved, extending re-
strictions given to the goalie from the domain. Constraints
would then be able to represent invariants as described ear-
lier, and would not require adding a new construct.

Refinements are a GRUPS-extension to the PDDL 3 spec,
as demonstrated in Listing 1. Refinements operate on a goal
in ways similar to how actions modify the system state. They
are syntactically specified similar to PDDL actions.

Goals represent the biggest syntactic departure between
PDDL 3 and GRUPS. We define goals as a set of goal-s; the
latter defined per the original PDDL3 spec as demonstrated
in Listing 2. Our sketch here supports managing different
goals at a time via one goal formula, and we feel it is suffi-
ciently human-readable to support problem authorship.

5 Discussion
Dynamic planning problems are semantically closed to new
goals because by definition the problem goals are pre-

sumed (Ghallab, Nau, and Traverso 2004). In contrast, goal-
driven autonomy problems are characterized in terms of
goals that must be refined and by definition are open to them.
Dynamic planning thus targets closed problems, and repre-
sent the challenge of articulating how goals are solved, akin
to the human cognitive process of problem solving (Newell,
Shaw, and Simon 1960). In turn, goal-driven autonomy tar-
gets open problems, and represent the challenge of articulat-
ing which goals need solving, akin to the human cognitive
process of problem recognition (Cox 2013).

Notably, we have not yet defined the algorithms that
would drive a classical goal-driven agent. While space pre-
vents us from doing so, we briefly sketch the functional map-
pings that might be added to Definition 3 to support solving
classical GDA problems. Let ω be a generic goalie function
akin to its planner counterpart from Equation 2. Its output is
three-fold: (1) an initial state based on the system’s current
one with (2) goals for the planner to pursue, and (3) expec-
tations our controller will be tasked with monitoring.

This then requires a generic discrepancies detector func-
tion, which we denote as Ω. Together with κ, the overall
architecture supports defining systematic ways to decide on
whether plan shifts are necessary or if goal shifts are. We
conclude our theory sketch with a preliminary formal defi-
nition of a goal-driven agent: a tuple, Ψ = ⟨φ, η, χ, κ, ω,Ω⟩,
with elements as defined throughout.

6 Conclusion
With this combined theoretical foundation, we discovered
several things. First, we articulated a novel and parsimo-
nious problem-based distinction between automated plan-
ning and goal reasoning (Definition 3 v. Definition 6). Sec-
ond, we illustrated how our formulation can potentially rec-
oncile a wide variety of features that presently motivate
the wide array of approaches to goal-driven autonomy (§3).
Third, we’ve identified that core assumptions around GDA
are not strictly necessary to define interesting goal reasoning
problems; relatedly, goal reasoning is necessary upon relax-
ing a tacit assumption we made explicit: the static goals (A9)
assumption (§4). Fourth, we defined a novel semantic foun-
dation for GDA via Definition 5. Fifth, in §4 we sketched a
new goalie-agnostic language—GRUPS—that we will con-
tinue to expand in future work. Finally, we demonstrated
a potentially interesting class of GDA problems: those in-
volved in developing an AI capable of playing adventure
games. We hope others are encouraged to systematically ex-
plore this problem class with us.

Acknowledgments
This material is based upon work supported by the Office
of Naval Research, Naval Research Laboratory under Grant
No. N00173-21-Q-0138, and supported by the National Sci-
ence Foundation under Grant No. #2046294. We also wish
to thank the anonymous reviewers who were tremendously
helpful with their comments during peer review. Any opin-
ions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the supporting agencies.

References
Aha, D. W. 2018. Goal Reasoning: Foundations, Emerging
applications, and Prospects. AI Magazine 39(2): 3–24.

Black, M. L. 2012. Narrative and Spatial Form in Digital
Media: A Platform Study of the SCUMM Engine and Ron
Gilbert’s The Secret of Monkey Island. Games and Culture
7(3): 209–237.

Cardona-Rivera, R. E.; Zagal, J. P.; and Debus, M. S. 2020.
GFI: A Formal Approach to Narrative Design and Game Re-
search. In Proceedings of the 13th International Conference
on Interactive Digital Storytelling, 133–148.

Choi, D. 2011. Reactive goal management in a cognitive
architecture. Cognitive Systems Research 12(3-4): 293–308.

Cox, M.; Dannenhauer, D.; and Kondrakunta, S. 2017. Goal
operations for cognitive systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 31.

Cox, M. T. 2007. Perpetual self-aware cognitive agents. AI
magazine 28(1): 32–32.

Cox, M. T. 2013. Goal-driven autonomy and question-based
problem recognition. In Proceedings of the 2nd Annual Con-
ference on Advances in Cognitive Systems, 29–45.

Cox, M. T. 2020. The Problem with Problems. In Proceed-
ings of the 9th Annual Conference on Advances in Cognitive
Systems.

Dannenhauer, D.; Muñoz-Avila, H.; and Cox, M. T. 2021.
Expectations for Agents with Goal-driven Autonomy. Jour-
nal of Experimental & Theoretical Artificial Intelligence
33(5): 867–889.

Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence 2(3-4): 189–208.

Gerevini, A.; and Long, D. 2005. Plan Constraints and Pref-
erences in PDDL3. Technical report, Department of Elec-
tronics for Automation, University of Brescia.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Elsevier.

Harland, J.; Morley, D. N.; Thangarajah, J.; and Yorke-
Smith, N. 2014. An Operational Semantics for the Goal
Life-Cycle in BDI Agents. Autonomous agents and multi-
agent systems 28(4): 682–719.

Hawes, N. 2011. A survey of motivation frameworks for in-
telligent systems. Artificial Intelligence 175(5): 1020–1036.
ISSN 0004-3702. doi:https://doi.org/10.1016/j.artint.2011.
02.002. Special Review Issue.

Kambhampati, S.; Knoblock, C. A.; and Yang, Q. 1995.
Planning as refinement search: a unified framework for eval-
uating design tradeoffs in partial-order planning. Artificial
Intelligence 76(1): 167–238.

Laird, J.; Rosenbloom, P.; and Newell, A. 2012. Universal
subgoaling and chunking: The Automatic Generation and
Learning of Goal Hierarchies, volume 11. Springer Science
& Business Media.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. E. 1998. PDDL–
The Planning Domain Definition Language. Technical re-
port, Yale Center for Computational Vision and Control,
New Haven, CT, USA.
Molineaux, M.; Klenk, M.; and Aha, D. 2010. Goal-driven
Autonomy in a Navy Strategy Simulation. In Proceedings
of the 24th AAAI Conference on Artificial Intelligence.
Muñoz Avila, H.; Jaidee, U.; Aha, D. W.; and Carter, E.
2010. Goal-driven autonomy with case-based reasoning. In
International Conference on Case-Based Reasoning, 228–
241. Springer.
Newell, A.; Shaw, J. C.; and Simon, H. A. 1960. Report
on a general problem-solving program for a computer. In
Proceedings of the International Conference on Information
Processing, 256–264.
Paisner, M.; Cox, M.; Maynord, M.; and Perlis, D. 2014.
Goal-driven autonomy for cognitive systems. In Proceed-
ings of the Annual Meeting of the Cognitive Science Society,
volume 36.
Paredes, A.; and Ruml, W. 2017. Goal Reasoning as Multi-
level Planning. In Proceedings of the ICAPS-17 Workshop
on Integrated Execution of Planning and Acting.
Riedl, M. O.; and Bulitko, V. 2013. Interactive Narrative: An
Intelligent Systems Approach. AI Magazine 34(1): 67–77.
Roberts, M.; Vattam, S.; Alford, R.; Auslander, B.; Karneeb,
J.; Molineaux, M.; Apker, T.; Wilson, M.; McMahon, J.; and
Aha, D. W. 2014. Iterative goal refinement for robotics. In
Proceedings of the 2014 ICAPS Workshop on Planning and
Robotics.
Talamadupula, K.; Benton, J.; Kambhampati, S.; Schermer-
horn, P.; and Scheutz, M. 2010. Planning for Human-robot
Teaming in Open Worlds. ACM Transactions on Intelligent
Systems and Technology 1(2): 1–24.
Vattam, S.; Klenk, M.; Molineaux, M.; and Aha, D. W. 2013.
Breadth of Approaches to Goal Reasoning: A Research Sur-
vey. In Goal Reasoning: Papers from the ACS Workshop,
111–128.
Weber, B. G.; Mateas, M.; and Jhala, A. 2010. Case-based
Goal Formulation. In Proceedings of the AAAI Workshop on
Goal-Driven Autonomy.
Weld, D. S. 1994. An Introduction to Least Commitment
Planning. AI Magazine 15(4): 27.

