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Abstract
Hybrid planning with task insertion for solving classical
planning problems, or decompositional planning, com-
bines partial-order causal link planning with hierarchi-
cal task networks, where steps in the plan may represent
composite (i.e., compound) actions that are decompos-
able into sub-steps using hierarchical knowledge. We
have designed a planning algorithm that responds to a
request for maximizing the hierarchical depth of plans
while minimizing the plan length. In some applications,
plans that adhere to hierarchical constraints are pre-
ferred over other valid plans. One of the main obstacles
of this challenge is to incentivize the planner to insert
composite actions while avoiding excessive search on
the depth attribute. We introduce plan scoring heuris-
tics that avoid over-discounting and under-discounting
depth using a novel way to measure plan depth. We eval-
uate these heuristics on test problems and demonstrate
that we can generate deep, low-cost solutions to plan-
ning problems while avoiding excessive search.

Hybrid planning is a plan-space planning paradigm that
combines partial-order causal link reasoning (Weld 1994)
with hierarchical knowledge (Erol, Hendler, and Nau 1994)
in order to solve a hybrid planning problem (the refine-
ment of an initial partial plan into a plan with no flaws).
While there exist several variants of hybrid planning (e.g.
Young, Pollack, and Moore 1994, Lee-Urban 2012, Be-
chon et al. 2014), all variants afford some representation
of task hierarchies through two kinds of tasks (i.e. steps):
primitive and composite. The former are similar to steps
in partial-order causal link (POCL) planning. The latter are
drawn from hierarchical task network (HTN) planning (but
also contain preconditions and effects as in POCL plan-
ning); they represent abstract tasks involving several more-
primitive steps. Whereas a primitive step that has been added
to a plan can be directly executed (assuming its precondi-
tions hold), composite steps that have been added are not di-
rectly executable; a more primitive sub-plan for the compos-
ite step must be found that depends on the composite’s pre-
conditions and that achieves the composite’s effects. Such a
sub-plan may be input to a hybrid planner through a decom-
position method.

Our planning applications make a non-standard depth re-
quest for hybrid planners. The request is that the plan-
ner maximizes the ratio of hierarchical depth (number of

decomposition methods) to plan length (number of prim-
itive tasks) of generated plans. The number of decompo-
sition methods it uses to refine the initial plan is an in-
tegral part of the planning problem’s solution. Composite
tasks are not wholly substituted for sub-plans that decom-
pose them, but rather kept around to identify the hierarchi-
cal structure inherent in the plan. The underlying assump-
tion is that the high-level structure of the plan (identified
through the decomposition methods) is implicitly mean-
ingful or useful for the planning agent. For example, in
planning-based natural language generation (Garoufi 2014),
plans may be preferred if they follow recognizable discourse
patterns, which may be computed from data-driven obser-
vations and operationalized as hierarchical knowledge. An-
other example is the case of planning-based narrative gener-
ation (Young et al. 2013), wherein plans may be preferred if
they follow normative narrative structure, often analytically
identified as containing hierarchical segments (Prince 2003;
Bordwell, Thompson, and Smith 1997).

Typically, hybrid planners will insert a composite task,
rather than a primitive task, if the composite task is explic-
itly needed because it has some primary effect: an effect
that none of the tasks in its decompositional refinement can
establish on its own (Kambhampati, Mali, and Srivastava
1998). A primary effect can characterize something that is
more than the sum of its parts; for example, an argument is
made by refuting facts, establishing background, referring to
evidence, and making a conclusion, but none of these items
are sufficient on its own. In contrast, in the classic travel
planning domain, a goal to be located at a destination is
achieved by a primitive task of exiting a plane that is at said
destination; thus, a composite task – e.g. travel-by-plane –
is not inserted into a plan unless it is estimated to save the
planner time and effort for repairing the same goal condition.
Given that heuristics tend to underestimate effort saved, and
composite tasks add more to the plan length than primitive
tasks, a planner using a best-first search is going to evaluate a
repair with a primitive task as cheaper than a plan that makes
the same repair with a composite task. We address the prob-
lem of fulfilling the depth request in hybrid domains where
composite tasks may not have primary effects.

The decision point we focus on is which task to insert to
repair open conditions, which (in POCL planning) are flaws
in the plan generated when a step has unsatisfied (i.e. open)
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preconditions and repaired by ensuring that the precondi-
tions are established by some earlier action; prior work has
focused on selecting a decomposition method for a com-
posite task. State-of-the-art heuristics that exploit task de-
composition (e.g. Minimal Modification Effort by Bercher,
Keen, and Biundo 2014) are not of use here. These heuristics
bias the planner to refine the initial plan to primitive tasks in
the least number of refinements (as they should do to gener-
ate the shortest plans). In our methodology, each composite
task is fully decomposed before it is inserted into a plan.
Thus, the hierarchical depth of a composite task is known at
the moment of insertion, and its entire decomposition refine-
ment tree (its sub-plan) is inserted into the plan. The main
question we ask is how should the planner best add hierar-
chical depth to the plan during task insertion to fulfill the
depth request? Our approach is to have the planner leverage
the known depth of the decomposition tree of inserted com-
posite tasks. Incentivizing the insertion of composite tasks
comes with a tradeoff: the planner must search a much larger
space of plans and significantly reduce efficiency. The key
problem we address is how to have the planner incentivize
inserting composite tasks without a significant tradeoff to
efficiency.
Contributions We introduce a plan selection function that
reifies the tradeoff between inserting deep and shallow tasks
within hybrid planning with task insertion. This function in-
centivizes selecting plans with composite tasks on the search
frontier and depends on a novel way to measure plan depth.
We evaluated our function’s effectiveness on the basis of
runtime performance and solution depth on test problems,
and demonstrate we can find deep, low-cost solutions while
avoiding brute-force search on hierarchical depth.

Related Work
Our planning task is an instance of hybrid planning with
task insertion. Terminologically, we use the term “decom-
positional planning” to describe what our planner is doing:
solving a problem given in terms of goal literals as in clas-
sical planning, but wherein abstract tasks can be inserted as
well (i.e. there are no initial abstract tasks, but rather solv-
ing proceeds from an initial dummy plan given by the ini-
tial conditions and the goal literals). While we recognize
that there are planning variants that differ terminologically
and semantically (e.g. “hybrid planning” by Kambhampati,
Mali, and Srivastava 1998), reconciling all variants is be-
yond the scope of this paper. In some variants, all (causally
necessitated) tasks are specified as part of a decomposition
method (Elkawkagy et al. 2012; Bercher, Keen, and Biundo
2014) and therefore task insertion is unneeded (or at least
not allowed in the context of the problem being addressed).
It is not always possible to specify all tasks in a decompo-
sition method: some open condition of a task may not have
a supplier within the same decompositional hierarchy. Thus,
task insertion is allowed to repair open conditions that are
left open as in Kambhampati, Mali, and Srivastava (1998)
and Geier and Bercher (2011). Inserted tasks can either be
primitive or composite.

One hybrid planning approach by Elkawkagy et al. (2012)
which does not allow task insertion is to compile a Task

Decomposition Graph (TDG) composed of edges connect-
ing tasks (primitive or composite) to decomposition meth-
ods and vice versa. The TDG is used to guide the planner
to shorter plans from an initial task representing the initial
partial plan so that the solution is a refinement of the ini-
tial task (Bercher, Keen, and Biundo 2014). The criteria for
a solution is that all composite tasks are decomposed into
primitive tasks, all tasks are fully grounded, and all open
conditions are repaired by other tasks in the plan. In our ap-
proach, a composite task is fully decomposed and grounded
before the entire sub-tree is inserted into a plan to repair an
open condition. The decompositions are performed in a pre-
caching stage where a max number of decompositional re-
finements (i.e. step height) is used to cutoff search. The de-
cision points we consider in this work is not which decom-
position method to select to decompose a composite task in
a plan, but rather which fully ground and decomposed com-
posite task tree to insert to repair an open condition in a plan.
Because the sub-tasks in the tree may have open conditions,
the TDG will under-estimate the number of decompositions
in the plan because inserted tasks may also be composite.

A planning domain and problem can (intentionally or in-
advertently) require hierarchical depth in the plan to solve
the problem. DPOCL-T (Jhala and Young 2010), a variant
of DPOCL (Young, Pollack, and Moore 1994) for schedul-
ing camera shots in narrative generation, is tested using a
domain that is engineered to promote hierarchical depth by
leveraging primary effects. At each “tier” in a multi-level
hierarchy, high-level operators have preconditions that can
only be fulfilled by other high-level operators at the same
level. Thus, a problem whose goal is a primary effect of a
high-level action will require the planner to create a high-
level plan. In a similar vein, HiPOP (Bechon et al. 2014)
uses stages to create plans with composite steps. In the first
round, only composite steps are applicable and must be used
for as long as possible without expanding them until no com-
posite steps can be used to satisfy preconditions of other
steps (or the goal conditions). If no solution can be found,
then HiPOP will never proceed to the expansion round.

The forward state-space hybrid planner UPS (To, Lang-
ley, and Choi 2015) favors states produced by composite
steps when that state satisfies elements of the goal formula.
Its heuristic counts the number of unmatched goal elements
when selecting steps for expansion, greedily selecting com-
posite steps. We suspect that UPS will excessively search
through a large space of composite tasks because of this
greedy heuristic. In future work, we plan to compare UPS
to our own approach.

The Language of Decompositional Planning
The formal model of decompositional planning we adopt
is taken from DPOCL, a planning system previously devel-
oped by Young, Pollack, and Moore (1994). DPOCL builds
on POCL planning, which searches in the space of plans to
find a partial plan (i.e. a set of steps S, a set of partial order-
ing relations O over S, and a set of causal links L) with no
flaws; all preconditions must be satisfied (no condition may
remain open) and no causal links may be threatened (i.e. it
should not be possible for any step to be ordered such that
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it potentially undoes a causal link’s protected literal). Open
conditions are repaired through adding or reusing a plan step
and threatened causal links are repaired by promoting or de-
moting the offending step to come after or before (respec-
tively) the threatened link. For a more thorough introduction
to POCL planning, we refer the reader to Weld (1994).

DPOCL has two kinds of steps. A primitive step is as in
POCL planning. A composite step is a step that is decom-
posable into a partial-plan, called a sub-plan. Each compos-
ite step is a composite operator type paired with a set of
bindings over operator parameters. In this paper, compos-
ite steps are associated with a single decomposition method
and a set of bindings over decomposition parameters (i.e.
a composite operator is rewritten with a specific decompo-
sition method). A step in the sub-plan of a composite step
is a sub-step. The decomposition specifies constraints over
partially defined sub-steps that are useful in our application.
A decompositional link relates a composite step to a sub-
step. The height of a composite step is the longest path of
decomposition links. Thus a decompositional plan is repre-
sented by a tuple hS,O, L,Di where D is a set of decom-
positional links. The goal of our planner is to generate a
DPOCL plan that solves an input decompositional planning
problem and maximizes the ratio of decomposition links to
primitive steps.

Motivating Problem
Our approach is broadly motivated by the goal of fostering
successful human-computer communication. Humans im-
plicitly use grammar to understand and recognize the mean-
ing of speakers (Sperber and Wilson 1987). Strictly, a gram-
mar defines what is a well-defined sequence. In human com-
munication, a grammar may be informal and describe what
is an easily recognized pattern of utterances. In human-in-
the-loop planning, a planning agent can pose queries to a
human operator in the decision of how to continue the plan-
ning process (Roth et al. 2004; Schirner et al. 2013). These
systems can leverage the way human communicators struc-
ture information to more easily recognize user intent and se-
lect plans that are not cognitively demanding to parse.

The specific application for a decompositional planner we
focus on is the task of directing film. A film director controls
various details related to how agents (i.e. character actors)
perform actions in an environment and how camera shots
should convey those details. Film directors plan out visual
details across shots to build up a hierarchically-structured
editing pattern. An editing pattern is composed of camera
shots, and the sequence that shots cut from one to the next
(i.e. transition) affects the way that viewers focus on events.
The general principle is that good cuts have matching vi-
sual details across shots. The more that shots conform to
an editing pattern, the better the aesthetic quality of the se-
quence. In computer graphics research, camera control sys-
tems find camera sequences that best adhere to a grammar of
film (He, Cohen, and Salesin 1996; Christianson et al. 1996;
Christie, Olivier, and Normand 2008).

Formulated as a decompositional planning task, the film
director (i.e. the planner) selects the content and style of
camera shots (primitive tasks) to compose a scene. Each task

EditingPattern(EP)

ActReact

Act

FULL

React

CU-0
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W-45

EP Match

W-120

Figure 1: Example Film Editing Grammar

has preconditions and effects: preconditions correspond to
the necessary world conditions for the actor to perform in the
world to create the camera shot content, and effects corre-
spond to conditions that change in the world state as a result
of the actor’s performance. The more that camera shots ad-
here to editing patterns (decomposition methods), the better
the quality of the resulting film. The decomposition meth-
ods impose constraints on camera shot attributes (e.g. scale,
angle) and character actions (e.g. orientation, timing) that
give rise to good editing transitions. Thus, the quality of the
solution is based on the degree that camera shots adhere to
editing patterns and not entirely on the length of the plan.
Figure 2 presents two short editing sequences: sequence A
has good individual shots but does not adhere to a pattern,
whereas sequence B adheres to an editing pattern and results
in matched visual details across shots.

The “film directing” decompositional planning task moti-
vates the depth request:

DEPTHREQUEST = max
⇡

|{s 2 S(⇡) : height(s) > 0}|
|{s 2 S(⇡) : height(s) = 0}|

maximize the ratio of decomposition methods to primitive
plan steps in a solution to a decompositional planning prob-
lem. This ratio corresponds to the percentage of camera
shots that adhere to an editing pattern. For each task that
the planner inserts to repair an open condition, the planner
must decide whether to add hierarchical depth to the plan’s
structure, and if so, how much. Figure 1 shows an exam-
ple grammar tree for film editing. The leaves of the tree
are camera shots, with the exception of EP where another
editing pattern can be refined into camera shots. To repair
an open condition, the planner decides whether to insert a
single camera shot (primitive task) or an editing pattern of
some depth (composite task), and each may introduce new
open condition flaws to establish the prerequisite world con-
ditions.

Approach
The approach has two stages: first, a composite step is com-
piled for every valid sub-tree of a task decomposition graph
(a sub-tree is valid just when its leaves are primitive tasks)
up to positive non-zero tree height cutoff hmax. These com-
posite tasks are pre-cached in a similar manner to mod-
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Figure 2: Sequences A and B are camera shots sampled from different versions of the same film created by a film director. A
has good individual shots but sequences in the film are discontinuous and do not follow editing patterns. B contains sequences
developed to adhere to editing patterns. This results in matched visual details across shots and improved focus on events.

ern POCL planners (e.g. VHPOP, developed by Younes and
Simmons (2003) pre-caches all possible ground instances of
problem operators as steps). After grounding the primitive
operators (defined to be h = 0), grounding continues with
composite operators in a bottom-up manner. The first round
of composite operators to be grounded (h = 1) can only use
ground elements and steps of height 0. Inductively, compos-
ite steps that have been grounded at height h can serve as
sub-steps for grounding composite operators at height h+1
up to hmax (exclusive). Thus, a composite step is defined
relative to the height where it has been grounded.

Definition 1 (Composite Step) Represents an instance of
a composite operator �c at height h. It is a tuple �G

c =
h�c, B,⇡u, hi, where B is a set of consistent bindings for
the variables in V 2 �c and ⇡u = hS,O,L,Di is a sub-
plan for a decomposition of �c such that S contains at least
one step whose height is exactly h � 1 and no steps with
height greater than h� 1.

Our method is a dynamic programming approach to recur-
sive HTN planning that can be used when the maximum
depth is known a priori. Composite operators are grounded
for every applicable decomposition method (at each height
h = 1 to hmax). The decomposition method is used to cal-
culate the sub-plan and variable bindings that are defined in
a composite step. This dynamic programming method was
developed by Winer and Young (2017).

The second stage is to solve the planning problem using
pre-cached steps. The algorithm follows a classic POP with
the addition that adding composite steps leads to the inser-
tion of its pre-cached sub-plan and the decompositional links
that point the composite step to its sub-steps.

0

00 01

010 011 012000 001

0110 0111
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a a

a arr a

p d

a

a

Figure 3: A plan search tree. Nodes are plans and edges are
refinements to the plan. The edge label represents the repair
method; one of add, reuse, promotion, and demotion.

Plan Search Tree and Plan Depth

Our novel notion of plan depth is based on the reasons that
steps are added to the plan. It depends on two structures: de-
composition links (as defined earlier) and add-repair arcs.
To define add-repair arcs, it is useful to talk about the plan-
ning process by way of its search tree. The plan search tree
represents the search space of plans and their refinements.
A vertex is a pair (⇡, F⇡) where ⇡ is a plan and F⇡ is a set
of flaws in ⇡. Edges are of the form (⇡, F⇡)

(f,⇢)���!(⇡0, F⇡0)
where f 2 F⇡ is the flaw selected for ⇡ (the parent) and
⇡0 (the descendant) is the result of repairing flaw f with re-
finement ⇢ (one of {add, reuse, promote, demote}). F⇡0 =
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F⇡ � f [ F⇢ where F⇢ are flaws detected in ⇡0 after ⇢. A
path is a sequence of nodes and edges connecting a vertex
with a descendant.

Let q be a path on a plan search tree, and ⇡0 =
hS,O,L,Di be a plan on a leaf vertex. An add-repair
arc exists between two steps si, sj 2 S from sj to
si just when there exists a causal link of the form
si

p�!sj 2 L such that si was added to S through an edge
(⇡, F⇡)

(hsi,pi, add)�������!(⇡0, F⇡0) (i.e. an open condition p for
step si repaired through adding a step) for some parent ⇡.

Definition 2 (Deep Path and Plan H-depth) A deep path
� on a plan ⇡ is a traversal of decomposition links and add-
repair arcs in the plan; the length of a deep path len(�) is
the number of decomposition links in the traversal. The H-
depth of ⇡ is the longest deep path on ⇡.

When steps are reused to repair an open condition, no plan
H-depth is added. H-depth is recalculated only after adding
steps and requires only constant time to track.

Algorithm
The Ground Decompositional Partial Order Planning algo-
rithm (GDPOP) presented in Algorithm 1 is a propositional
POCL planner that uses composite steps whose decompo-
sition refinements are already performed. GDPOP takes as
input a set of ground primitive steps ⇤G

p , a set of ground
composite steps ⇤G

c , the plan-space initial plan, a candi-
date map, which maps every open condition of every step
hsneed, pi to every step with an effect p), and a threat map,
which maps every open condition of every step hsneed, pi to
every step with an effect ¬p. Initially, the plan has depth
0 and steps are assigned a depth of 0. When a composite
step is added to repair an open condition (a la Algorithm 2),
sub-steps are inserted and depth is propagated (a la Algo-
rithm 3).

At each iteration, GDPOP identifies all flaws in the plan
under consideration, selects a flaw to fix, and adds to the
search fringe all the plans that represent every way in which
the flaw could be repaired. Selecting which flaw to re-
pair affects the order that plans are visited in the search
space (Younes and Simmons 2003); we adopted a simplified
version which is
1. open conditions that are static (are unchangeable given

the problem’s operators)
2. threatened causal link flaws
3. open conditions that hold initially
4. most unsafe open conditions first (with at least one po-

tential risk detected using the threat map)
5. open conditions with at least 1 candidate for reuse (de-

tected using the candidate map, sorted by random hash
code)

6. open conditions with no option for reuse
A risk srisk in a plan ⇡ for an open condition of the form
hsneed, prei is a step that may undo the open condition be-
cause srisk 2 TMAP[pre] and 6 9sneed � srisk 2 O(⇡). The
number of risks for an open condition is set at the moment
it is created (we did not update the number of risks when
inserting new steps or remove risks when a step is no longer

Algorithm 1 GDPOP
Input: Candidate map CMAP, threat map TMAP, initial plan ⇡

0

with steps s
0

, s1 (all of depth 0), a function F returning
flaws F for a plan, and a plan selection function E .
Output: A consistent plan with no flaws or failure.

1: OL := openList.push(⇡
0

)
2: while OL not empty do
3: ⇡ = hS,O, L,Di := argmax⇡2OL E(⇡)
4: if cycle in O, then skip
5: end if
6: F := F(⇡, TMAP), return ⇡ if |F | = 0
7: f := Flaw-Select(F,CMAP, TMAP)
8: if f is an open condition then
9: OL.push(Add(⇡, f, CMAP))

10: OL.push(Reuse(⇡, f, CMAP))
11: else if f is a threatened causal link then
12: OL.push(⇡promote and ⇡demote)
13: end if
14: end while
15: return FAIL

Algorithm 2 Add
Input:⇡, hsneed, pi, CMAP;
Output: Expanded ⇡

1: ⇧ = ?
2: for each step � in CMAP[p] do
3: snew := �.clone(); snew.depth = sneed.depth
4: ⇡0 := ⇡.clone()
5: Insert(⇡0, snew); Repair(⇡0, snew, sneed, p)
6: ⇧.add(⇡0)
7: end for
8: return ⇧

a risk). A candidate scndt in a plan for an open condition is
a step in CMAP[pre] that can be ordered before sneed. Simi-
larly, no update is made to update the number of candidates
after the open condition is created.

We detail the plan refinement operations that use our
novel constructs (i.e. Algorithm 2, Algorithm 3) and leave
un-specified the plan refinement operations that are taken
from standard POCL planning (i.e. Reuse in Algorithm 1,
Repair in Algorithm 2, and the calculation of plans ⇡promote
and ⇡demote that promote and demote steps that threaten
causal links, respectively).

A Depth-Balancing Plan Selection Heuristic
The evaluation of a plan, which orders plans in the search
frontier (open list) in a best-first plan-space search, is de-
fined as E0(⇡) = g(⇡) + h(⇡) where g(⇡) denotes the plan
cost, i.e. the number of steps in the plan, and h(⇡) denotes
the heuristic value, an estimate of the number of steps which
need to be inserted into the plan to solve the problem.

We adopt VHPOP’s additive-reuse heuristic function for
calculating the heuristic value. The function recursively sim-
ulates new open conditions created by inserting actions to
make repairs until all open conditions hold initially. Nota-

Proceedings of the 1st ICAPS Workshop on Hierarchical Planning

5



Algorithm 3 Insert
Input:⇡, snew

1: Add snew to ⇡
2: if height(snew) > 0 then
3: for each sub-step s in SUB-PLAN(snew) do
4: Add decompositional link snew

�

s to ⇡
5: s.depth = snew.depth+ 1
6: if s.depth > ⇡.depth then
7: ⇡.depth = s.depth
8: end if
9: Insert(⇡, s)

10: end for
11: end if

tion: CMAP is a candidate map, which maps each precondi-
tion to the set of actions that can repair it, and OC returns
the set of open conditions in a plan.

hr
add(⇡) =

X

q�!ai2OC(⇡)

8
<

:

0 if 9aj 2 S \ CMAP[q]
and ai � aj 62 O

hadd(q) otherwise

hadd(q) =

8
<

:

0 if q holds initially
mina2CMAP[q] hadd(a) if CMAP[q] 6= ?
1 otherwise

hadd(a) = 1 +
X

p2pre(a)

hadd(p)

In addition to cost g and heuristic h, we introduce a value
d that corresponds to H-depth (as in Definition 2). We ex-
perimented with several ways to discount this value:
1. E1(⇡) = g(⇡) + hr

add(⇡)� d(⇡)

2. E2(⇡) = g(⇡) + hr
add(⇡)� log

2

(d(⇡) + 1)

3. E3(⇡) = g(⇡)
1+log2(d(⇡)+1)

+ hr
add(⇡)

4. E4(⇡) = g(⇡)+hr
add(⇡)�|{s 2 S(⇡) : height(s) > 0}|

5. E5(⇡) = g(⇡)2

1+|{s2S(⇡):height(s)>0}| + hr
add(⇡)

6. E6(⇡) = |{s 2 S(⇡) : height(s) > 0}|+ hr
add(⇡)

In E2 and E3, the logarithm helps diminish the extent to
which plan H-depth drives the score. The gist of these func-
tions is that composite steps are considered less valuable
as repairs the deeper the plan gets, and therefore protects
against over-incentivizing depth. E2 subtracts depth and E3

divides by it; we compared them to evaluate the sensitivity
of the search to how depth is factored into the score. We hy-
pothesized that E3 would find the best depth-request ratios.

Preliminary Evaluation 1
We developed and compared GDPOP planning with differ-
ent plan selection heuristics on a generic domain. Our fo-
cus is on the performance of the heuristics on each problem.

Table 1: A comparison of plan quality across experiment
conditions. All values are averages produced across prob-
lems; g(⇡)m is the mean cost of solutions, S is the number
of solutions out of 320, d(⇡)m is the mean depth of solu-
tions, and dmax(⇡)m is the mean maximum depth of solu-
tions, where the maximum is defined over solutions for a
given planning problem.

g(⇡)m S d(⇡)m dmax(⇡)m

gPO 6.89 320 0.00 0.00
gInsrt E0 5.89 320 0.61 0.88
gInsrt E1 6.58 320 0.30 1.13
gInsrt E3 9.58 320 1.36 2.75
gAdd E0 3.34 287 1.01 2.38
gAdd E1 2.79 152 2.10 3.71
gAdd E2 3.45 290 1.69 2.88
gAdd E3 5.91 281 1.98 4.38

In addition to E1, E2, E3 as candidate depth-balancing plan
selection functions, we also considered the following algo-
rithm variants:
• gPO (primitive-only) indicates that only primitive steps

are provided as input.
• gInsrt (with composite steps) adds 1 to the cost for every

Insert operation.
• gAdd (with composite steps) adds 1 to the cost for ev-

ery Add operation (and therefore sub-steps are inserted
for free).

Methods Python was used to prototype the idea and hy-
pothesis1. Subsequently, C# was used as part of the port to
the Unity Game Engine for film directing, and demonstrates
the run time efficiency more realistically. We ran the proto-
type implementation of GDPOP on sample problems which
vary in number of objects, initial conditions, or goal condi-
tions. The composite operators in the domain are based on
filming the classic travel domain. Eight (8) problems were
constructed that averaged 2 agents, 2.125 vehicles, 2.5 loca-
tions, 1.625 goal conditions. First, the steps are pre-cached.
On average, the problems included 45.25 compiled primi-
tive steps (�G

p ), and 201 compiled composite steps (�G
c ).

The maximum step height is 2. The largest problem (#8) has
4 agents, 4 locations, 2 vehicles, and 2 goal conditions. The
planner is run on a 64-bit Windows 7 machine with an In-
tel i7-3770 CPU at 3.40 GHz and 16 GB of RAM. For each
experimental condition, the planner was run until 40 solu-
tions were generated or 400 seconds had elapsed. The con-
ditions of the experiment are gPO, gInsrt E i, and gAdd E i

for i = 0� 3; a total of 9 conditions.

Results We analyzed the performance of the planner on
the basis of runtime and nodes expanded. In general, the
primitive-only condition is fastest but expands far more
nodes (as it should given that composite steps can add many
primitive steps in a single node). The gInsrt and gInsrt E1

1https://github.com/drwiner/PyDPOCL
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Table 2: Plan Evaluation Results (Preliminary Evaluation
2). Legend: Ev: plan scoring function, Heu: heuristic, AR:
“AddReuse”, OC: “number of open conditions”, RT : run-
time (milliseconds), Op: “number of nodes opened”, Exp:
“number of nodes expanded”, Co: cost, D: number of de-
composition methods, R: depth request ratio, S: number of
problems solved out of 8. The “zero” heuristic was also run
for each evaluation, but not included in cases where no prob-
lems are solved. We also ran a breadth-first search which did
not solve any problems.

Ev Heu RT Op Exp Co D R S
E0 AR 734 1744 185 4.5 0.3 0.4 8
E0 OC 346 1087 180 3.3 0 0 7
E1 AR 697 1557 165 6.3 1.1 1.5 8
E1 OC 334 1044 175 5.3 1 1.4 7
E2 AR 690 1526 161 6.3 1.1 1.5 8
E2 OC 332 1012 168 5.3 1 1.4 7
E3 AR 123 360 41.4 6.4 1.1 1.5 8
E3 OC 191 730 87 6.3 1.1 1.5 8
E4 AR 720 1744 185 4.6 0.3 0.4 8
E4 OC 333 1087 180 3.3 0 0 7
E5 AR 29 77 12 5 1 0.6 3
E5 OC 401 1027 199 9 2 0.4 2
E6 AR 47 166 21 4.2 0 0 6
E6 OC 44 232 28 4.3 0 0 8
E6 Zero 1509 5430 966 3 0 0 5
DFS Zero 11 61 13 8 1 0.02 1

conditions perform very similarly, expanding less nodes than
PO but more than the gAdd conditions. The results suggest
that the gAdd cost function with the E3 scoring function ex-
pands the fewest nodes on average.

Table 1 shows the quality of solutions for each experimen-
tal condition across planning problems. Across the experi-
mental conditions, we observe that cost is weakly sacrificed
for plan H-depth, and that E3 performs best for finding the
deepest solutions. Although gAdd E1 appears to find the best
average depth, it does not find solutions on one of the plan-
ning problems in the allotted time (problem 8) and generally
struggled on other problems, whereas gAdd E2 and E3 found
40 solutions on this problem before the time cutoff.

Preliminary Evaluation 2
The first experiment sought to evaluate plan selection cri-
teria that would promote hierarchical depth. However, the
depth request ratio was not measured. We ran a new experi-
ment to evaluate the average depth request ratio, to compare
against baseline heuristics, and to compare against other se-
lection functions that are potentially depth-balancing. The
GDPOP algorithm is reimplemented in C#2 as part of the
film directing application. Table 2 shows performance and
quality averages for the first solution across the 8 problems
used in the previous experiment, for each combination of
evaluation function and heuristic function, applying a cutoff
time of 6,000 milliseconds.

2https://github.com/drwiner/gdpop

Results The plan selection functions that perform best on
the depth request are E1, E2, and E3 with the add-reuse
heuristic. E3 also performs well with the number of open
conditions heuristic, but overall does not perform as consis-
tently and does not solve all 8 problems. The zero heuristic
(h(⇡) = 0) typically did not find solutions in time.

Conclusion
Hybrid planning techniques are popular in theory and prac-
tice, but (as also noted by Shivashankar et al. 2016) lit-
tle effort has been devoted to guiding the search using hi-
erarchical information in a planner-independent way. This
planning paradigm is used in domains where hierarchical
knowledge characterizes phenomena of interest that is not
expressible in non-hierarchical formalisms; for example, the
recognition of higher-level concepts on the basis of more
primitive event information (Lesh, Rich, and Sidner 1999;
Cardona-Rivera and Young 2017) or the generation of nar-
ratives where hierarchies represent communicative patterns
and story plots (Winer and Young 2017). With our work,
search in these domains can generate deep, low-cost solu-
tions in a more principled manner.

One of the key obstacles we overcome with our approach
is avoiding excessive search on the hierarchical depth at-
tribute. A naive strategy is to simply discount composite
tasks that add depth. However, this strategy causes the plan-
ner to always search through the space of plans that in-
sert composite tasks before considering primitive tasks. The
magnitude of the discount determines how excessively the
planner searches in the direction of inserting composite tasks
to repair open conditions. At some point, the discount is out-
weighed by the size of the plan and backtracking occurs such
that shallower tasks are considered by the planner to make
the same repairs. Although this approach prioritizes maxi-
mum depth, it is slow because it behaves like brute force
search on the hierarchical depth attribute to find the best
depth/cost ratio.

On the other hand, if the least-cost plans are always ex-
panded first and no discount is offered for inserting tasks
that add hierarchical depth (as in the standard case), then
the planner will start shallow and insert composite tasks
just when it is strictly more efficient. A depth-balanced ap-
proach neither over-discounts nor under-discounts hierarchi-
cal depth. In this work, we formulate a dynamic discount for
depth that exploits the hierarchical depth of the sub-trees of
composite tasks to guide the planner to “deep” solutions.
When a plan is “shallow” (hierarchically), deep composite
tasks are discounted, but as the plan becomes “deeper”, this
discount recedes. We introduced a new way to measure plan
depth, and used this measurement as part of a search strategy
for decompositional planning where deep solutions are pre-
ferred. Our preliminary evidence supports a claim that our
dynamic discount is useful for achieving a depth-balanced
approach. Our method may also be useful for state-space
decompositional planning, which has historically suffered
from similar issues.

Importantly, we tested our scoring functions on a single
planning domain. To verify that our results are generaliz-
able, we also need to test the scoring functions with different
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hierarchical domains. The effects of differently structured
hierarchical knowledge is less clear than primitive-only do-
mains (Chrpa, McCluskey, and Osborne 2015); an evalua-
tion with such differently structured hierarchical knowledge
warrants a follow-up investigation that is beyond our scope
here. This study would compare domains where the amount
of decomposition knowledge provided as input is controlled,
and its effects on the search for deep solutions is examined.
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